α, β amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has a wide range of biological activities. ABAM is isolated from the species of the Burseraceae family, in which the species Protium is commonly found in the Amazon region of Brazil. The aim of this work was to develop inclusion complexes (ICs) of ABAM and β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) by physical mixing (PM) and kneading (KN) methods. Interactions between ABAM and the CD’s as well as the formation of ICs were confirmed by physicochemical characterization in the solid state by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Physicochemical characterization indicated the formation of ICs with both βCD and HPβCD. Such ICs were able to induce changes in the physicochemical properties of ABAM. In addition, the formation of ICs with cyclodextrins showed to be an effective and promising alternative to enhance the anti-inflammatory activity and safety of ABAM.
Microparticulate systems such as microparticles, microspheres, microcapsules or any particle in a micrometer scale (usually of 1–1000 µm) are widely used as drug delivery systems, because they offer higher therapeutic and diagnostic performance compared to conventional drug delivery forms. These systems can be manufactured with many raw materials, especially polymers, most of which have been effective in improving the physicochemical properties and biological activities of active compounds. This review will focus on the in vivo and in vitro application in the last decade (2012 to 2022) of different active pharmaceutical ingredients microencapsulated in polymeric or lipid matrices, the main formulation factors (excipients and techniques) and mostly their biological activities, with the aim of introducing and discussing the potential applicability of microparticulate systems in the pharmaceutical field.
α,β Amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has shown a variety of pharmacological properties, including anti-inflammatory effect. ABAM is isolated from Burseraceae oilresins, especially from the Protium species, which is commonly found in the Brazilian Amazon. This work aimed to develop solid dispersions (SD) of ABAM with the following hydrophilic polymers: polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG-6000) and hydroxypropylmethylcellulose (HPMC). The SDs were prepared by physical mixture (PM), kneading (KND) and rotary evaporation (RE) methods. In order to verify any interaction between ABAM and the hydrophilic polymers, physicochemical characterization was performed by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC) analysis. Furthermore, an in vitro anti-inflammatory assay was performed with ABAM alone and as SDs with the hydrophilic polymers. The results from the characterization analysis show that the SDs were able to induce changes in the physicochemical properties of ABAM, which suggests interaction with the polymer matrix. In vitro anti-inflammatory assay showed that the SDs improved the anti-inflammatory activity of ABAM and showed no cytotoxicity. In conclusion, this study showed the potential use of SDs as an efficient tool for improving the stability and anti-inflammatory activity of ABAM without cytotoxicity.
α,β-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and β-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.
Research background. The current commercial scenario indicates an increase in the demand for natural dyes. Compared to synthetic dyes, natural ones have the advantage of being sustainable, making them of great interest for the food and cosmetic industries. The development of new natural dyes is necessary, as well as the carrying out of complementary research regarding the existing ones. Experimental approach. The present study aimed to characterize the chemical and physicochemical characteristics of the dehydrated endocarp of the genipap (Genipa americana) fruit, as well as performing the relevant stability and cytotoxicity tests. The chemical characterization was performed by LC/MS/MS analyses. The stability studies were carried out by spectrophotometry and cytotoxicity assays using cell culture and fluorometric methods. Results and conclusions. After dehydration and milling of the fruit's endocarp, a powder was obtained, which with 20 % water was used to extract the dye. Five compounds were elucidated using HPLC-MS and confirmed the presence of the geniposide as its main compound. Via the X-ray diffraction test and electron microscopy analysis, it was possible to describe the powder obtained as being amorphous and of porous structure with a variable size, respectively. The thermogravimetric analysis indicated a maximum loss of 61 % mass after exposure to a temperature range of 240 °C to 760 °C. The obtained blue dye showed to be stable in the absence of light, at room temperature and presented neutral pH. In the cytotoxicity assay, 95.05±1.33 % of viable human fibroblast were observed after exposure to this dye. The genipap fruit can be a viable alternative for the obtention of natural blue dye, since it is easy to obtain and has very low toxicity for food, pharmaceutical or cosmetic industries. Novelty and scientific contribution. This study demonstrates for the first time the physicochemical and biological properties of a natural blue dye from G. americana fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.