Under homeostatic conditions, a proportion of senescent CXCR4hi neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1−/− mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1−/− mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1−/− mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1−/− mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.— Dalli, J., Jones, C. P., Cavalcanti, D. M., Farsky, S. H., Perretti, M., Rankin, S. M. Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow.
The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2alphabeta. Both fatty acids elevated L-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1beta and CINC-2alphabeta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.
Background and purpose: We have shown that endogenous glucocorticoids control neutrophil mobilization in the absence of inflammation. In this study the role of the glucocorticoid receptor (GR) in the physiological control of neutrophil mobilization was investigated, focusing on the specific mechanisms for mature neutrophils in bone marrow, circulating neutrophils and endothelial cells. Experimental approach: Male Wistar rats were treated with RU 38486 or adrenalectomized. Cell numbers in bone marrow and circulation were morphologically quantified and expressions of L-selectin determined by flow cytometry. Expressions of Pselectin, E-selectin, PECAM-1, VCAM-1 and ICAM-1 were measured by immunohistochemistry on vessels of cremaster muscle and their mRNA levels quantified in primary cultured endothelial cells. NF-kB activity in neutrophils and endothelium was quantified by EMSA. Key results: RU 38486 treatment altered the maturation phases of neutrophilic lineage and reduced expression of L-selectin in mature neutrophils from bone marrow; increased the number of neutrophils in the circulation and elevated the expression of L-selectin in these cells. P-selectin and E-selectin expression in endothelial cells was unchanged by adrenalectomy or RU 38486 treatment. Membrane expressions, mRNA levels of ICAM-1, VCAM-1 and PECAM-1 and NF-kB translocation into the nucleus were higher in the endothelium of adrenalectomized and RU 38486 treated rats. Conclusions and implications: Endogenous glucocorticoids, through activation of GR on neutrophils, physiologically control the rolling behaviour of these cells and, by modulating endothelial functions, affect their adhesiveness. The molecular mechanism induced by activated GR is different in each cell, as NF-kB translocation was only altered in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.