Precessing vortex cores (PVC), arising from a global instability in swirling flows, can dramatically alter the dynamics of swirl-stabilized flames. Previous study of these instabilities has identified their frequencies and potential for interaction with the shear layer instabilities also present in swirling flows. In this work, we investigate the dynamics of precessing vortex cores at a range of swirl numbers and the impact that turbulence, which tends to increase with swirl number due to the increase in mean shear, has on the dynamics of this instability. This is particularly interesting as stability predictions have previously incorporated turbulence effects using an eddy viscosity model, which only captures the impact of turbulence on the base flow, not on the instantaneous dynamics of the PVC itself. Time-resolved experimental measurements of the three-component velocity field at ten swirl numbers show that at lower swirl numbers, the PVC is affected by turbulence through the presence of vortex jitter. With increasing swirl number, the PVC jitter decreases as the PVC strength increases. There is a critical swirl number below which jitter of the PVC vortex monotonically increases with increasing swirl number, and beyond which the jitter decreases, indicating that the strength of the PVC dominates over turbulent fluctuations at higher swirl numbers, despite the fact that the turbulence intensities continue to rise with increasing swirl number. Further, we use a nonlinear van der Pol oscillator model to explain the competition between the random turbulent fluctuations and coherent oscillations of the PVC. The results of this work indicate that while both the strength of the PVC and magnitude of turbulence intensity increase with increasing swirl number, there are defined regimes where each of them hold a stronger influence on the large-scale, coherent dynamics of the flow field.
Many industrial combustion systems, especially power generation gas turbines, use fuel-lean combustion to reduce NOx emissions. However, these systems are highly susceptible to combustion instability, the coupling between combustor acoustics and heat release rate oscillations of the flame. It has been shown in previous work by the authors that a precessing vortex core (PVC) can suppress shear layer receptivity to external perturbations, reducing the potential for thermoacoustic coupling. The goal of this study is to understand the effect of combustor exit boundary condition on the flow structure of a swirling jet to increase fundamental understanding of how combustor design impacts PVC dynamics. The swirling jet is generated with a radial-entry, variable-angle swirler, and a quartz cylinder is fixed on the dump plane for confinement. Combustor exit constriction plates of different diameters are used to determine the impact of exit boundary condition on the flow field. Particle image velocimetry (PIV) is used to capture the velocity field inside the combustor. Spectral proper orthogonal decomposition, a frequency-resolved eigenvalue decomposition that can identify energetic structures in the flow, is implemented to identify the PVC at each condition in both energy and frequency space. We find that exit boundary diameter affects both the structure of the flow and the dynamics of the PVC. Higher levels of constriction (smaller diameters) force the downstream stagnation point of the vortex breakdown bubble upstream, resulting in greater divergence of the swirling jet. Further, as the exit diameter decreases, the PVC becomes less energetic and less spatially defined. Despite these changes in the base flow and PVC coherence, the PVC frequency is not altered by the exit boundary constriction. These trends will help inform our understanding of the impact of boundary conditions on both static and dynamic flame stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.