Yin Yang 1 (YY1) is a multifunctional transcription factor that acts as an activator, repressor, or initiator of transcription of numerous cellular and viral genes. Previous studies in tissue culture model systems suggest YY1 plays a role in development and differentiation in multiple cell types, but the biological role of YY1 in vertebrate oocytes and embryos is not well understood. Here we analyzed expression, activity, and subcellular localization profiles of YY1 during Xenopus laevis development. Abundant levels of YY1 mRNA and protein were detected in early stage oocytes and in all subsequent stages of oocyte and embryonic development through to swimming larval stages. The DNA binding activity of YY1 was detected only in early oocytes (stages I and II) and in embryos after the midblastula transition (MBT), which suggested that its potential to modulate gene expression may be specifically repressed in the intervening period of development. Experiments to determine transcriptional activity showed that addition of YY1 recognition sites upstream of the thymidine kinase promoter had no stimulatory or repressive effect on basal transcription in oocytes and post-MBT embryos. Although the apparent transcriptional inactivity of YY1 in oocytes could be explained by the absence of DNA binding activity at this stage of development, the lack of transcriptional activity in post-MBT embryos was not expected given the ability of YY1 to bind its recognition elements. Subsequent Western blot and immunocytochemical analyses showed that YY1 is localized in the cytoplasm in oocytes and in cells of developing embryos well past the MBT. These findings suggest a novel mode of YY1 regulation during early development in which the potential transcriptional function of the maternally expressed factor is repressed by cytoplasmic localization.
Developability considerations should be integrated with lead engineering of antibody drug candidates in interest of their cost effective translations into medicines. To explore feasibility of this imperative, we have performed rational mutagenesis studies on a monoclonal antibody (MAB1) whose development was discontinued owing to manufacturability hurdles. Seven computationally designed variants of MAB1 containing single point (V44K, E59S, E59T and E59Y) and double (V44KE59S, V44KE59T and V44KE59Y) mutations in its light chain were produced in Chinese Hamster Ovary (CHO) cells and purified by using platform processes employed during commercial scale production of monoclonal antibodies. MAB1 and its variants were formulated in the same platform buffer and subjected to a battery of experiments to assess their solution behaviors, and biological activities. Five of the seven (71%) variants of MAB1 demonstrated improved biophysical attributes in multiple experimental testings. Contrary to the commonly expressed reservations about potential biological activity loss upon developability optimizations, the improvements in solution behavior of MAB1 also increased its biological activity up to ~180%. In particular, concentrate-ability and apparent solubility of V44KE59S improved to ~150% and ~160%, respectively. Its diffusion interaction parameter (kD) reduced to 28% and viscosity at ~100 mg/ml decreased to less than half of the corresponding values for MAB1. V44KE59S is also slightly more active and its transfections in CHO cells were more productive. It also degraded slower than MAB1 in three month long 25°C and 40°C formulation stability studies. These results open doors to an exciting realm of structure-based biologic drug design where developability and biological activity can be simultaneously optimized at the molecular engineering stages.
We have shown that zebrafish (Danio rerio) are an excellent model for evaluating the link between early life stage exposure to environmental chemicals and disease in adulthood and subsequent unexposed generations. Previously, we used this model to identify transgenerational effects of dioxin (2,3,7,) on skeletal development, sex ratio, and reproductive capacity. Transgenerational inheritance of TCDD toxicity, notably decreased reproductive capacity, appears to be mediated through the male germ line. Thus, we examine testicular tissue for structural and gene expression changes using histology, microarray, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Histological analysis revealed decreased spermatozoa with concurrent increase in spermatogonia, and decreased germinal epithelium thickness in TCDD-exposed males compared with controls. We also identified altered expression of genes associated with testis development, steroidogenesis, spermatogenesis, hormone metabolism, and xenobiotic response. Altered genes are in pathways involving lipid metabolism, molecular transport, small molecule biochemistry, cell morphology, and metabolism of vitamins and minerals. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational infertility due to TCDD exposure in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.