PREFACE
Podosomes and invadopodia are actin-based dynamic protrusions of the plasma membrane of metazoan cells that represent sites of attachment to, and degradation of, the extracellular matrix. Key proteins in these structures include the actin regulators cortactin and (N)-WASP, the adaptor proteins Tks4 and Tks5, and the metalloprotease MT1-MMP. Many cell types elaborate these structures, including invasive cancer cells, vascular smooth muscle and endothelial cells, and immune cells such as macrophages and dendritic cells. Recent progress has been made in our understanding of the regulatory and functional aspects of podosome and invadopodia biology and their role in human disease.
Summary
Epithelial-Mesenchymal Transition (EMT) is implicated in converting stationary epithelial tumor cells into motile mesenchymal cells during metastasis. However, the involvement of EMT in metastasis is still controversial due to the lack of a mesenchymal phenotype in human carcinoma metastases. Using a spontaneous squamous cell carcinoma mouse model, we show that activation of the EMT-inducing transcription factor Twist1 is sufficient to promote carcinoma cells to undergo EMT and disseminate into blood circulation. Importantly, in distant sites, turning off Twist1 to allow reversion of EMT is essential for disseminated tumor cells to proliferate and form metastases. Our study demonstrates in vivo the requirement of “reversible EMT” in tumor metastasis and may resolve the controversy on the importance of EMT in carcinoma metastasis.
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.
MET exon 14 alterations are oncogenic drivers of non-small cell lung cancers (NSCLCs). 1These alterations are associated with increased MET activity and preclinical sensitivity to MET Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
ALK, ROS1, and NTRK rearrangements define a new rare subtype of mCRC with extremely poor prognosis. Primary tumor site, MSI-high, and RAS and BRAF wild-type status may help to identify patients bearing these alterations. While sensitivity to available treatments is limited, targeted strategies inhibiting ALK, ROS, and TrkA-B-C provided encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.