Cartilaginous shark skeletons experience axial deformation at the intervertebral joints, but also within the mineralized cartilaginous centrum, which can compress to between 3% and 8% of its original length in a free-swimming shark. Previous studies have focused on shark centra mechanical properties when loaded to failure; our goal was to determine properties when compressed to a biologically relevant strain. We selected vertebrae from six shark species and from the anterior and posterior regions of the vertebral column. Centra were X-radiographed to measure double cone proportion and apex angles, and were mechanically tested at three displacement rates to 4% strain. We determined the variation in toughness and stiffness of vertebral centra among shark species and ontogenetic stages, testing strain rates, and compared anterior and posterior regions of the vertebral column. Our results suggest that toughness and stiffness, which are positively correlated, may be operating in concert to support lateral body undulations, while providing efficient energy transmission and return in these swift-swimming apex predators. We analyzed the contribution of double cone proportion and apex angle to centra mechanical behavior. We found that the greatest stiffness and toughness were in the youngest sharks and from the posterior body, and there was significant interspecific variation. Significant inverse correlations were found between mechanical properties and double cone apex angle suggesting that properties can be partially attributed to the angle forming the double cone apex. These comparative data highlight the importance of understanding cartilaginous skeleton mechanics under a wide variety of loading conditions representative of swimming behaviors seen in the wild.
A diagnostic characteristic of stingrays in the Family Dasyatidae is the presence of a defensive, partially-serrated spine located on the tail. We assessed the contribution of caudal spine morphology on puncture and withdrawal performance from two congeneric, co-occurring stingrays, the Atlantic stingray, Hypanus sabinus, and the bluntnose stingray, Hypanus say. Spines exhibited a high degree of morphological variability. Stingray spines were serrated along 50.8% (H. sabinus) or 62.3% (H. say) of their length. Hypanus say had a greater number of serrations along each side of the spine (30.4) compared to H. sabinus (20.7) but pitch did not differ between species. We quantified spine puncture and withdrawal forces using porcine skin as a model for human skin. Puncture and withdrawal forces did not differ significantly between species, or within H. say, but withdrawal force was greater than puncture force for H. sabinus. We incorporated micro-CT scanning to quantify tissue mineral density and found that for both species, the shaft of the spine was more heavily mineralized than the base, and midway (50%) along the length of the spine was more heavily mineralized than the tip. The mineralization variability along the spine shaft may create a stiff structure that can fracture once embedded within the target tissue and act as an effective predator deterrent.
Mammals living in aquatic environments load their axial skeletons differently from their terrestrial counterparts. The structure and mechanical behavior of trabecular bone can be especially indicative of varying habitual forces. Here, we investigated vertebral trabecular bone mechanical properties (yield strength, stiffness and toughness) throughout development in Florida manatees (Trichechus manatus latirostris), obligate undulatory swimmers. Thoracic, lumbar and caudal vertebrae were dissected from manatees (N=20) during necropsies. We extracted 6 mm 3 samples from vertebral bodies and tested them in compression in three orientations (rostrocaudal, dorsoventral and mediolateral) at 2 mm min −1. We determined variation in mechanical properties between sexes, and among developmental stages, vertebral regions and testing orientations. We also investigated the relationships between vertebral process lengths and properties of dorsoventrally and mediolaterally tested bone. Rostrocaudally tested bone was the strongest, stiffest and toughest, suggesting that this is the principal direction of stress. Our results showed that bone from female subadults was stronger and stiffer than that of their male counterparts; based on these data, we hypothesize that hormonal shifts at sexual maturity may partially drive these differences. In calves, bone from the posterior region was stronger and tougher than that from the anterior region. We hypothesize that as animals grow rapidly throughout early development, bone in the posterior region would be the most ossified to support the rostrocaudal force propagation associated with undulatory swimming.
Marine mammals underwent a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 Ma). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphologies and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp). We report signficant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective, and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, Orientation Patch Count Rotated (OPCR) and Relif Index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.