The transparent materials used in building envelopes significantly contribute to heating and cooling loads of a building. The use of transparent materials requires to solve issues regarding heat gain, heat loss, and daylight. Water flow glazing (WFG), a disruptive technology, includes glazing as part of the Heating, Ventilation and Air Conditioning (HVAC) system. Water is transparent to visible wavelengths, but it captures most of the infrared solar radiation. As an alternative to fossil fuel-based HVAC systems, the absorbed energy can be transferred to the ground through borehole heat exchangers and dissipated as a means of free-cooling. Researchers of the Polytechnic University of Madrid have developed a software tool to calculate the energy balance while incorporating the dynamic properties of WFG. This article has studied the mathematical model of that tool and validated its ability to predict energy savings in buildings, taking spectral and thermal parameters of glazing catalogs, commercial software, and inputs from the measurements of the prototypes. The results found in this article showed that it is possible to predict the thermal behavior of WFG and the energy savings by comparing the thermal parameters of two prototypes. The energy absorbed by the water depends on the mass flow rate and the inlet and outlet temperatures.
New light envelopes for buildings need a holistic vision based on the integration of architectural design, building simulation, energy management, and the curtain wall industry. Water flow glazing (WFG)-unitized facades work as transparent and translucent facades with new features, such as heat absorption and renewable energy production. The main objective of this paper was to assess the performance of a new WFG-unitized facade as a high-performance envelope with dynamic thermal properties. Outdoor temperature, variable mass flow rate, and solar radiation were considered as transient boundary conditions at the simulation stage. The thermal performance of different WFGs was carried out using simulation tools and real data. The test facility included temperature sensors and pyranometers to validate simulation results. The dynamic thermal transmittance ranged from 1 W/m2K when the mass flow rate is stopped to 0.06 W/m2K when the mass flow rate is above 2 L/min m2. Selecting the right glazing in each orientation had an impact on energy savings, renewable energy production, and CO2 emissions. Energy savings ranged from 5.43 to 6.46 KWh/m2 day in non-renewable energy consumption, whereas the renewable primary energy production ranged from 3 to 3.42 KWh/m2 day. The CO2 emissions were reduced at a rate of 1 Kg/m2 day. The disadvantages of WFG are the high up-front cost and more demanding assembly process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.