The outbreak of the novel coronavirus, severe acute respiratory syndrome (SARS)–CoV-2, has gained unprecedented global attention. SARS-CoV-2, which causes the newly described coronavirus disease 2019 (COVID-19), has affected millions of people and led to over 1.9 million deaths worldwide by the beginning of January 2021. Several governments have opted for lockdown as one of the measures to combat the rapidly increasing number of COVID-19 cases. Academic institutions (i.e., universities, colleges, research centers and national laboratories), which are home to thousands of students, researchers, technicians, and administrative staff, have strictly followed government regulations. Due to the lockdown, the majority of academics have been facing various challenges, especially in transitioning from classroom to remote teaching and conducting research activities from a home office. This article from an early-career researchers’ perspective addresses the common challenges that academic institutions have encountered and possible strategies they have adopted to mitigate those challenges at the individual organizational level. Furthermore, we propose a framework to facilitate the handling of such crisis in any near future at the organizational level. We hope academics, policymakers and (non) government organizations across the globe will find this perspective a call to better improve the overall infrastructure of academic institutions.
Aerobic methane oxidation (MOx) depends critically on the availability of copper (Cu) as a crucial component of the metal centre of particulate methane monooxygenase, one of the main enzymes involved in MOx. Some methanotrophs have developed Cu acquisition strategies, in which they exude Cu-binding ligands termed chalkophores under conditions of low Cu availability. A well-characterised chalkophore is methanobactin (mb), exuded by the microaerophilic methanotroph Methylosinus trichosporium OB3b. Aerobic methanotrophs generally reside close to environmental oxic-anoxic interfaces, where the formation of Cu sulphide phases can aggravate the limitation of bioavailable Cu due to their low solubility. The reactivity of chalkophores towards such Cu sulphide mineral phases has not yet been investigated. In this study, a combination of dissolution experiments and equilibrium modelling was used to examine the dissolution and solubility of bulk and nanoparticulate Cu sulphide minerals in the presence of mb as influenced by pH, oxygen and natural organic matter. In general, weshow that mb is effective at increasing the dissolved Cu concentrations in the presence of a variety of Cu sulphide phases that may potentially limit Cu bioavailability.More Cu was mobilised per mole of mb from Cu sulphide nanoparticles compared with well-crystalline bulk covellite (CuS). In general, the efficacy of mb at mobilising Cu from Cu sulphides is pH-dependent. At lower pH, e.g. pH 5, mb was ineffective at solubilizing Cu. The presence of mb increased dissolved Cu concentrations between pH 7 and 8.5, where the solubility of all Cu sulphides is generally low, both in the presence and absence of oxygen. These results suggest that chalkophore-promoted Cu mobilisation from sulphide phases is an effective extracellular mechanism for increasing dissolved Cu concentrations at oxic-anoxic interfaces, particularly in the neutral to slightly alkaline pH range. This suggests that aerobic methanotrophs may be able to fulfil their Cu requirements via the exudation of mb in natural environments where the bioavailability of Cu is constrained by very stable Cu sulphide phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.