Background: Hemophagocytic lymphohistiocytosis (HLH) can be familial or secondary, which is often triggered by infection or malignancy. HLH therapy includes dexamethasone and etoposide. However, therapy is associated with significant morbidity and mortality. Anakinra, a recombinant interleukin-1 receptor antagonist, has been reported to treat macrophage activation syndrome (MAS), rheumatic sHLH. We report our experience with anakinra to treat patients with nonrheumatic secondary HLH (sHLH). Procedure: Six children were diagnosed with HLH from December 2014 to August 2016 and were treated with subcutaneous anakinra (6-10 mg/kg/day divided over four doses) with or without dexamethasone (10 mg/m 2 /day). Therapy was either escalated or weaned based on clinical and laboratory response. Results: Five of six patients were treated with anakinra and dexamethasone, and one with anakinra alone due to active cytomegalovirus (CMV) pneumonitis. The median age of diagnosis was 1.8 years (range 0.8-14.9 years). No pathogenic mutations associated with HLH were identified, but three of six possessed genetic variants of unknown significance. Infectious triggers were identified for four patients and two patients had malignancies. The average treatment duration was 8 weeks with 3.5-5.5 years of follow up. No patient needed escalation of therapy to include etoposide. All patients achieved remission. Anakinra was well tolerated without significant adverse effects. Conclusion: Initial treatment with anakinra (with or without dexamethasone) is a feasible treatment alternative for patients with secondary HLH and may allow for avoidance of etoposide. We recommend early initiation of anakinra when HLH is suspected. A broader investigation of the use of anakinra as a first-line agent for HLH is ongoing.
◥ Camptothecins are potent topoisomerase I inhibitors used to treat high-risk pediatric solid tumors, but they often show poor efficacy due to intrinsic or acquired chemoresistance. Here, we developed a multivalent, polymer-based prodrug of a structurally optimized camptothecin (SN22) designed to overcome key chemoresistance mechanisms. The ability of SN22 vs. SN38 (the active form of irinotecan/CPT-11) to overcome efflux pump-driven drug resistance was tested. Tumor uptake and biodistribution of SN22 as a polymer-based prodrug (PEG-[SN22] 4 ) compared with SN38 was determined. The therapeutic efficacy of PEG-[SN22] 4 to CPT-11 was compared in: (i) spontaneous neuroblastomas (NB) in transgenic TH-MYCN mice; (ii) orthotopic xenografts of a drug-resistant NB line SK-N-BE(2)C (mutated TP53); (iii) flank xenografts of a drug-resistant NB-PDX; and (iv) xenografts of Ewing sarcoma and rhabdomyosarcoma. Unlike SN38, SN22 inhibited NB cell growth regardless of ABCG2 expression levels. SN22 prodrug delivery resulted in sustained intratumoral drug concentrations, dramati-cally higher than those of SN38 at all time points. CPT-11/SN38 treatment had only marginal effects on tumors in transgenic mice, but PEG-[SN22] 4 treatment caused complete tumor regression lasting over 6 months (tumor free at necropsy). PEG-[SN22] 4 also markedly extended survival of mice with drug-resistant, orthotopic NB and it caused long-term (6þ months) remissions in 80% to 100% of NB and sarcoma xenografts. SN22 administered as a multivalent polymeric prodrug resulted in increased and protracted tumor drug exposure compared with CPT-11, leading to long-term "cures" in NB models of intrinsic or acquired drug resistance, and models of high-risk sarcomas, warranting its further development for clinical trials.Significance: SN22 is an effective and curative multivalent macromolecular agent in multiple solid tumor mouse models, overcoming common mechanisms of drug resistance with the potential to elicit fewer toxicities than most cancer therapeutics.
High‐risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high‐risk primary and recurrent disease are distinct: in newly diagnosed patients, non‐response to therapy is often associated with a higher level of tumor “stemness” paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non‐curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2‐mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F‐108 (PF108), these features translated into rapid tumor regression and long‐term survival in models of both ABCG2‐overexpressing and p53‐mutant high‐risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier‐drug association integrated into the design of the hydrolytically activatable PF108‐[SN22]2 have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo‐naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier‐based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high‐risk neuroblastoma, PF108‐[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug‐resistant disease presently lacking effective treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.