Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU-/- mice have no apparent capacity to rapidly uptake calcium. While basal metabolism appears unaffected, the skeletal muscle of MCU-/- mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU-/- mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU-/- mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not appear to protect MCU-/- cells and tissues from cell death, although MCU-/- hearts fail to respond to the PTP inhibitor cyclosporin A (CsA). Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.
We analyzed a new hypomorphic mouse model containing a targeted intronic insertion of a neomycin cassette within the mechanistic target of rapamycin (mTOR) locus. Mice with two hypomorphic (mTORΔ/Δ) alleles are viable but express mTOR at approximately 25% of wild type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximate 20% increase in median survival. While mTORΔ/Δ mice are smaller than wild type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis or metabolic rate. Consistent with their increased lifespan, mTORΔ/Δ mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that as mTORΔ/Δ mice age, they exhibit a marked functional preservation in many but not all organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion.
MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1−/− mitochondria demonstrate altered calcium uptake and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1−/− mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1−/− mice show marked, spontaneous improvement, coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1−/− mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.