We analyzed a new hypomorphic mouse model containing a targeted intronic insertion of a neomycin cassette within the mechanistic target of rapamycin (mTOR) locus. Mice with two hypomorphic (mTORΔ/Δ) alleles are viable but express mTOR at approximately 25% of wild type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximate 20% increase in median survival. While mTORΔ/Δ mice are smaller than wild type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis or metabolic rate. Consistent with their increased lifespan, mTORΔ/Δ mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that as mTORΔ/Δ mice age, they exhibit a marked functional preservation in many but not all organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion.
Background Arterial restenosis after vascular surgery is a common cause of midterm restenosis and treatment failure. Herein, we aim to investigate the role of microbe‐derived butyrate, FFAR2 (free fatty acid receptor 2), and FFAR3 (free fatty acid receptor 3) in mitigating neointimal hyperplasia development in remodeling murine arteries after injury. Methods and Results C57 BL /6 mice treated with oral vancomycin before unilateral femoral wire injury to deplete gut microbiota had significantly diminished serum and stool butyrate and more neointimal hyperplasia development after arterial injury, which was reversed by concomitant butyrate supplementation. Deficiency of FFAR 3 but not FFAR2, both receptors for butyrate, exacerbated neointimal hyperplasia development after injury. FFAR 3 deficiency was also associated with delayed recovery of the endothelial layer in vivo. FFAR 3 gene expression was observed in multiple peripheral arteries, and expression was increased after arterial injury. Treatment of endothelial but not vascular smooth muscle cells with the pharmacologic FFAR 3 agonist 1‐methylcyclopropane carboxylate stimulated cellular migration and proliferation in scratch assays. Conclusions Our results support a protective role for butyrate and FFAR 3 in the development of neointimal hyperplasia after arterial injury and delineate activation of the butyrate‐ FFAR 3 pathway as a valuable strategy for the prevention and treatment of neointimal hyperplasia.
BackgroundThe microbiome has a functional role in a number of inflammatory processes and disease states. While neointimal hyperplasia development has been linked to inflammation, a direct role of the microbiota in neointimal hyperplasia has not yet been established. Germ-free (GF) mice are an invaluable model for studying causative links between commensal organisms and the host. We hypothesized that GF mice would exhibit altered neointimal hyperplasia following carotid ligation compared to conventionally raised (CONV-R) mice.MethodsTwenty-week-old male C57BL/6 GF mice underwent left carotid ligation under sterile conditions. Maintenance of sterility was assessed by cultivation and 16S rRNA qPCR of stool. Neointimal hyperplasia was assessed by morphometric and histologic analysis of arterial sections after 28 days. Local arterial cell proliferation and inflammation was assessed by immunofluorescence for Ki67 and inflammatory cell markers at five days. Systemic inflammation was assessed by multiplex immunoassays of serum. CONV-R mice treated in the same manner served as the control cohort. GF and CONV-R mice were compared using standard statistical methods.ResultsAll GF mice remained sterile during the entire study period. Twenty-eight days after carotid ligation, CONV-R mice had significantly more neointimal hyperplasia development compared to GF mice, as assessed by intima area, media area, intima+media area, and intima area/(intima+media) area. The collagen content of the neointimal lesions appeared qualitatively similar on Masson’s trichrome staining. There was significantly reduced Ki67 immunoreactivity in the media and adventitia of GF carotid arteries 5 days after ligation. GF mice also had increased arterial infiltration of anti-inflammatory M2 macrophages compared to CONV-R mouse arteries and a reduced proportion of mature neutrophils. GF mice had significantly reduced serum IFN-γ-inducible protein (IP)-10 and MIP-2 5 days after carotid ligation, suggesting a reduced systemic inflammatory response.ConclusionsGF mice have attenuated neointimal hyperplasia development compared to CONV-R mice, which is likely related to altered kinetics of wound healing and acute inflammation. Recognizing the role of commensals in the regulation of arterial remodeling will provide a deeper understanding of the pathophysiology of restenosis and support strategies to treat or reduce restenosis risk by manipulating microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.