During the 15th International Histocompatibility and Immunogenetics Workshop (IHIWS), 14 human leukocyte antigen (HLA) laboratories participated in the Analysis of HLA Population Data (AHPD) project where 18 new population samples were analyzed statistically and compared with data available from previous workshops. To that aim, an original methodology was developed and used (i) to estimate frequencies by taking into account ambiguous genotypic data, (ii) to test for Hardy-Weinberg equilibrium (HWE) by using a nested likelihood ratio test involving a parameter accounting for HWE deviations, (iii) to test for selective neutrality by using a resampling algorithm, and (iv) to provide explicit graphical representations including allele frequencies and basic statistics for each series of data. A total of 66 data series (1-7 loci per population) were analyzed with this standard approach. Frequency estimates were compliant with HWE in all but one population of mixed stem cell donors. Neutrality testing confirmed the observation of heterozygote excess at all HLA loci, although a significant deviation was established in only a few cases. Population comparisons showed that HLA genetic patterns were mostly shaped by geographic and/or linguistic differentiations in Africa and Europe, but not in America where both genetic drift in isolated populations and gene flow in admixed populations led to a more complex genetic structure. Overall, a fruitful collaboration between HLA typing laboratories and population geneticists allowed finding useful solutions to the problem of estimating gene frequencies and testing basic population diversity statistics on highly complex HLA data (high numbers of alleles and ambiguities), with promising applications in either anthropological, epidemiological, or transplantation studies.
The Registries of Bone Marrow Donors around the world include more than 30 million volunteer donors from 57 different countries, and were responsible for over 17,000 hematopoietic stem cell transplants in 2016. The Brazilian Bone Marrow Volunteer Donor Registry (REDOME) was established in 1993 and is the third largest registry in the world with more than 4.3 million donors. We characterized HLA allele and haplotypes frequencies from REDOME comparing them with the donor self-reported race group classification. Five-locus haplotype frequencies (A~C~B~DRB1~DQB1) were estimated for each of the six race groups, resolving phase and allelic ambiguity using the expectation-maximization (EM) algorithm. The top 100 haplotypes in the race groups were separated into eight clusters of haplotypes, based on haplotype similarity, using CLUTO. We present HLA allele and haplotype frequency data from six race groups from 2,938,259 individuals from REDOME. The most frequent haplotype was the same for all groups: A*01:01g~C*07:01g~B*08:01g~DRB1*03:01g~DQB1*02:01g. Some frequent haplotypes such as A*02:01g~C*16:01g~B*44:03~DRB1*07:01g~DQB1*02:01g was not found in people with Preta (Sub-Saharan African descent). A cluster including Branca (European) and Parda or non-informed (admixed) could be distinguished from both Preta (SubSaharan) and Indígena (Amerindian) groups, and from the Amarela (Asian) ones, which clustered with their original population. These results have implications on cross-population matching and can help in donor searches and population-based recruitment strategies.
The killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop (IHIWS) sought to explore worldwide population variation in the KIR loci, and to examine the relationship between KIR genes and their human leukocyte antigen (HLA) ligands. Fifteen laboratories submitted KIR genotype and HLA ligand data in 27 populations from six broad ethnic groups. Data were analyzed for correlations between the frequencies of KIR and their known HLA ligands. In addition, allelic typing was performed for KIR2DL2 and 3DL1 in a subset of populations. Strong and significant correlations were observed between KIR2DL2, 2DL3 genotype frequencies and the frequency of their ligand, HLA-C1. In contrast, only weak associations were seen for 3DL1, 3DS1 and the HLA-Bw4 ligand. Although some aspects of the correlations observed here differ from those reported in other populations, these data provide additional evidence of linked evolutionary histories for some KIR and HLA loci. Investigation of allele-level variation for the B haplotype locus KIR 2DL2 showed that two alleles, *001 and *003, predominate in all populations in this study. Much more allelic variation was observed for the A haplotype locus 3DL1, with several alleles observed at moderate frequencies and extensive variation observed between populations.
associated with reduced chances of finding a match (up to 60% reduction). Finally, we document that the strongest reduction in chances of finding a match is associated with having an MHC region of exclusively African ancestry (up to 75% reduction). We apply our findings to a specific condition, for which there is a clinical indication for transplantation: sickle-cell disease. We show that the increased African ancestry in patients with this disease leads to reduced chances of finding a match, when compared to the remainder of the sample, without the condition. Our results underscore the influence of ancestry on chances of finding compatible HLA matches, and indicate that efforts guided to increasing the African component of registries are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.