Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin‐coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles’ coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.
Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor−host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro-and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.