Abstract. In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invariant of the mapping of a 3-D sphere into a 2-D sphere; it can have arbitrary helicity depending on control parameters. It is shown how to define Euler potentials globally. The singular curve of the Euler potential plays the key role in computing helicity. With the introduction of Euler potentials, the helicity can be calculated as an integral over the surface bounded by this singular curve. A special programme for visualization is worked out. Helicity coordinates are introduced which can be useful for numerical simulations where helicity control is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.