Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.
Continuous monitoring of heavy metal content in vegetables is of high priority for population nutrition control, as well as risk assessment for human health. The chemical composition of plants is a reliable indicator of their contamination by hazardous substances accumulated in the environment as a consequence of inadequately applied agro-technology. The main goal of this study was to examine the quality of vegetables that reach consumer markets as a function of growth location. Samples of 11 of the most common vegetable species used in the human diet were collected during a 4-year survey. Vegetables originated from local farm producers who cultivated them at different locations in Vojvodina Province, Serbia. Many vegetable samples contained disturbingly high levels of the investigated metals: cadmium, lead, nickel, and chromium. The plant species with the highest Cd accumulation was spinach, where Cd leaves exceeded the maximum permissible concentrations (MPCs) in more than half of the analyzed samples from different localities (54%). Pb concentrations in spinach were also higher than MPC values (according to Serbian law 3.0 μg/g) in 46% of all analyzed samples. Results showed that Cr levels in all tested vegetable species were below MPC values recommended by the FAO/WHO organization. The largest chromium accumulator was spinach, with average values of 2.3 μg/g, followed by beetroot and parsnips with an average concentration of 1.4 μg/g. The highest average content of Ni in all analyzed vegetable species was also recorded in spinach leaves, with an average value of 2.2 μg/g, followed by broccoli (1.7 μg/g) and tomatoes (1.5 μg/g).
The spread and occurrence of the oak lace bug Corythucha arcuata out of its natural distribution area across European and Asian countries has been reported during the past decades. The ecological and economic significance of oak stands and the vulnerability of plants to various abiotic and/or biotic factors requires in-depth knowledge of plant-pest interaction. The present study examined the influence of C. arcuata feeding on the photosynthetic characteristics and gas-exchange parameters, mineral nutrient concentrations and defense mechanisms (the activities of some antioxidant enzymes) of leaves of pedunculate oak. The rate of photosynthesis, transpiration and stomatal conductance were lowered by 58.84, 21.66 and 35.71%, respectively, in comparison to non-infested plants. The concentrations of photosynthetic pigments and activities of antioxidant enzymes, catalase and ascorbate peroxidase, were affected by the presence of C. arcuata. To our knowledge this is the first paper providing a report on the physiological responses of Quercus robur plants exposed to C. arcuata infestation. Understanding the impact of pests, such as the invasive species C. arcuata on physiological processes and vitality of young plants and plant responses, could provide a foundation for efficient preservation of oak forests endangered by the oak lace bug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.