To minimize recurrence following resection of a cerebral metastasis, whole-brain irradiation therapy (WBRT) has been established as the adjuvant standard of care. With prolonged overall survival in cancer patients, deleterious effects of WBRT gain relevance. Sector irradiation (SR) aims to spare uninvolved brain tissue by applying the irradiation to the resection cavity and the tumor bed. 40 were randomized to receive either WBRT (n = 18) or SR (n = 22) following resection of a singular brain metastasis. Local tumor control was satisfactory in both groups. Recurrence was observed earlier in the SR (median 3 months, 1–6) than in the WBRT cohort (median 8 months, 7–9) (HR, 0.63; 95% CI, 0.03–10.62). Seventeen patients experienced a distant intracranial recurrence. Most relapses (n = 15) occurred in the SR cohort, whereas only two patients in the WBRT group had new distant tumor manifestation (HR, 6.59; 95% CI, 1.71–11.49; p = 0.002). Median overall survival (OS) was 15.5 months (range: 1–61) with longer OS in the SR group (16 months, 1–61) than in the WBRT group (13 months, 3–52), without statistical significance (HR, 0.55; 95% CI, 0.69–3.64). Concerning neurocognition, patients in the SR group improved in the follow-up assessments, while this was not observed in the WBRT group. There were positive signals in terms of QOL within the SR group, but no significant differences in the global QLQ and QLQ-C30 summary scores were found. Our results indicate comparable efficacy of SR in terms of local control, with better maintenance of neurocognitive function. Unsurprisingly, more distant intracranial relapses occurred.Clinical Trial Registration:ClinicalTrials.gov, identifier NCT01667640.
Purpose A major complication of sequential and concomitant chemoradiation in breast cancer treatment is interstitial pneumonitis induced by radiation therapy (RT), systemic therapy, or a combination of both. Dose and volume of co-irradiated lung tissue directly correlate with the risk of radiation pneumonitis. Especially in case of combined treatment, it is often unclear which of the used therapeutic agents promote pneumonitis. Methods This was a prospective monocentric study including 396 breast cancer patients. A systematic analysis of single and combined therapeutic measures was performed in order to identify treatment-related factors enhancing the risk of pneumonitis post RT. Results Overall incidence of pneumonitis of any grade was 38%; 28% were asymptomatic (grade 1) and 10% were symptomatic (> grade 1). Pneumonitis > grade 2 did not occur. Beside age, smoking status, and mean lung dose, the combined treatment with goserelin and tamoxifen significantly enhanced the risk of pneumonitis in a supra-additive pattern (odds ratio [OR] 4.38), whereas each agent alone or combined with other drugs only nonsignificantly contributed to a higher pneumonitis incidence post RT (OR 1.52 and OR 1.16, respectively). None of the other systemic treatments, including taxanes, increased radiation pneumonitis risk in sequential chemoradiation. Conclusion Common treatment schedules in sequential chemoradiation following breast-conserving surgery only moderately increase lung toxicity, mainly as an asymptomatic complication, or to a minor extent, as transient pneumonitis ≤ grade 2. However, combined treatment with tamoxifen and the LHRH analog goserelin significantly increased the risk of pneumonitis in breast cancer patients after chemoradiation. Thus, closer surveillance of involved patients is advisable.
Radiation necrosis represents a potentially devastating complication after radiation therapy in brain tumors. The establishment of the diagnosis and especially the differentiation from progression and pseudoprogression with its therapeutic implications requires interdisciplinary consent and monitoring. Herein, we want to provide an overview of the diagnostic modalities, therapeutic possibilities and an outlook on future developments to tackle this challenging topic. The aim of this report is to provide an overview of the current morphological, functional, metabolic and evolving imaging tools described in the literature in order to (I) identify the best criteria to distinguish radionecrosis from tumor recurrence after the radio-oncological treatment of malignant gliomas and cerebral metastases, (II) analyze the therapeutic possibilities and (III) give an outlook on future developments to tackle this challenging topic. Additionally, we provide the experience of a tertiary tumor center with this important issue in neuro-oncology and provide an institutional pathway dealing with this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.