The purpose of this paper is to build a model for assessing the satisfaction of passenger service by the public transport system. The system is constructed using intelligent agents, whose action is based on self-learning principles. The agents are passengers who depend on transport and can choose between two modes: a car or a bus wherein their choice of transport mode for the next day is based on their level of satisfaction and their neighbors' satisfaction with the mode they used the day before. The paper considers several algorithms of agent behavior, one of which is based on reinforcement learning. Overall, the algorithms take into account the history of the agents' previous trips and the quality of transport services. The outcomes could be applied in assessing the quality of the transport system from the point of view of passengers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.