Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by mutations in either of two genes, TSC1 or TSC2, resulting in the constitutive activation of the mammalian target of rapamycin complex 1 (mTORC1). mTOR inhibitors are now considered the treatment of choice for TSC disease. A major pathological feature of TSC is the development of subependymal giant cell astrocytomas (SEGAs) in the brain. Nowadays, it is thought that SEGAs could be a consequence of aberrant aggregation and migration of neural stem/progenitor cells (NSPCs). Therefore, reactivation of cell migration of NSPCs might be the crucial step for the treatment of patients. In order to identify potential in vitro targets activating migration, we generated Tsc1-deficient NSPCs. These cells summarize most of the biochemical and morphological characteristics of TSC neural cells, such as the mTORC1 activation, the formation of abnormally enlarged astrocytes-like cells, the reduction of autophagy flux and the impairment of cell migration. Moreover, nuclear translocation, namely activation of the transcription factor EB (TFEB) was markedly impaired. Herein, we show that compounds such as everolimus, ionomycin and curcumin, which directly or indirectly stimulate TFEB nuclear translocation, restore Tsc1-deficient NSPC migration. Our data suggest that reduction of TFEB activation, caused by mTORC1 hyperactivation, contributes to the migration deficit characterizing Tsc1-deficient NSPCs. The present work highlights TFEB as a druggable protein target for SEGAs therapy, which can be additionally or alternatively exploited for the mTORC1-directed inhibitory approach.
The monocarbonyl analogue of curcumin (1E,4E)-1,5-Bis(2-methoxyphenyl)penta-1,4-dien-3-one (C1) has been used as a specific activator of the master gene transcription factor EB (TFEB) to correlate the activation of this nuclear factor with the increased activity of lysosomal glycohydrolases and their recruitment to the cell surface. The presence of active lysosomal glycohydrolases associated with the lipid microdomains has been extensively demonstrated, and their role in glycosphingolipid (GSL) remodeling in both physiological and pathological conditions, such as neurodegenerative disorders, has been suggested. Here, we demonstrate that Jurkat cell stimulation elicits TFEB nuclear translocation and an increase of both the expression of hexosaminidase subunit beta (HEXB), hexosaminidase subunit alpha (HEXA), and galactosidase beta 1 (GLB1) genes, and the recruitment of β-hexosaminidase (Hex, EC 3.2.1.52) and β-galactosidase (Gal, EC 3.2.1.23) on lipid microdomains. Treatment of Jurkat cells with the curcumin analogue C1 also resulted in an increase of both lysosomal glycohydrolase activity and their targeting to the cell surface. Similar effects of C1 on lysosomal glycohydrolase expression and their recruitment to lipid microdomains was observed by treating the SH-SY5Y neuroblastoma cell line; the effects of C1 treatment were abolished by TFEB silencing. Together, these results clearly demonstrate the existence of a direct link between TFEB nuclear translocation and the transport of Hex and Gal from lysosomes to the plasma membrane.
The mechanistic target of rapamycin (mTOR), a serine-threonine kinase, plays a pivotal role in regulating cell growth and proliferation. Notably, a great deal of evidence indicates that mTOR signaling is also crucial in controlling proliferation and differentiation of several stem cell compartments. Consequently, dysregulation of the mTOR pathway is often associated with a variety of disease, such as cancer and metabolic and genetic disorders. For instance, hyperactivation of mTORC1 in neural stem cells (NSCs) is associated with the insurgence of neurological manifestation characterizing tuberous sclerosis complex (TSC). In this review, we survey the recent contributions of TSC physiopathology studies to understand the role of mTOR signaling in both neurogenesis and tumorigenesis and discuss how these new insights can contribute to developing new therapeutic strategies for neurological diseases and cancer.
One of the earliest steps during the development of the nervous system is the establishment of neuronal polarity and the formation of an axon. The intrinsic mechanisms that promote axon formation have been extensively analyzed. However, much less is known about the extrinsic signals that initiate axon formation. One of the candidates for these signals is Insulin-like growth factor 1 (Igf1) that acts through the Igf1 (Igf1R) and insulin receptors (InsR). Since Igf1R and InsR may act redundantly we analyzed conditional cortex-specific knockout mice that are deficient for both Igf1r and Insr to determine if they regulate the development of the cortex and the formation of axons in vivo . Our results show that Igf1R/InsR function is required for the normal development of the embryonic hippocampus and cingulate cortex while the lateral cortex does not show apparent defects in the Igf1r ; Insr knockout. In the cingulate cortex, the number of intermediate progenitors and deep layer neurons is reduced and the corpus callosum is absent at E17. However, cortical organization and axon formation are not impaired in knockout embryos. In culture, cortical and hippocampal neurons from Igf1r ; Insr knockout embryos extend an axon but the length of this axon is severely reduced. Our results indicate that Igf1R/InsR function is required for brain development in a region-specific manner and promotes axon growth but is not essential for neuronal polarization and migration in the developing brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.