This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials. Molecular studies were also addressed in this review. The classification provided in the present manuscript details information about microbial species, parameters of operation (e.g., temperature, particle size, pH, and process length), and target metals to compare recoveries among the bioleaching processes. The findings show an increasing interest in the technology from research institutes and mineral processing-related companies over the last decade. The current research trends demonstrate that investigations are mainly focused on determining the optimum parameters of operations for different techniques and minor applications at the industrial scale, which opens the opportunity for greater technological developments. An overview of bioleaching of each metal substrate and opportunities for future research development are also included.
This study examines the effects of several operating parameters on copper leaching from chalcopyrite ores using an adapted mesophilic bacterial culture. Three temperatures (35, 40, and 45°C), three pulp density (1, 2, and 4% (w/v)), and three initial ferrous ion (Fe(II)) concentrations (5, 10, and 20 g/L) were employed as variable parameters, and their effects on the bioleaching efficiency of chalcopyrite were investigated. After 14 days, the maximum copper bioleaching efficiency was estimated to be ³64% at a temperature of 45°C, a pH of 1.5, an initial ferrous concentration of 5 g/L, and a pulp density of 4%. More specifically, the chalcopyrite dissolution tests conducted at different temperatures showed a minimal effect of temperature and low leaching efficiency (<20%) regardless of temperature. The trend of chalcopyrite dissolution at different pulp densities showed that Cu extraction tended to increase with increases in pulp density. Moreover, the Cu leaching efficiency associated with mesophilic microorganisms largely decreased when the initial Fe(II) concentration was greater than 10 g/L. The Cu leaching behavior in different test conditions was evalauted with concentrations of total iron (Fe), Fe(II), and ferric ions (Fe(III)), as well as the oxidation-reduction potential (ORP) of the solution used in the test. The Cu leaching rate increased under lower ORP conditions, lower Fe(III):Fe(II) ratios, and balanced Fe(II)Fe(III) cycles. [
Infrastructure projects and agriculture expansion are increasingly threatening forest conservation in Pará state (Brazil). It becomes necessary to address the implications of these activities on the Amazon complex socio-ecological system, considering both material and non-material aspects of Nature´s Contributions to People (NCP). Multiple studies developed future scenarios for the Amazon, but only a few have focused on discussing positive futures derived from policies and interventions based on conservation and human well-being. Here, we aim at understanding the drivers of forest cover change to produce positive scenarios for the future of the Amazon forest in Pará state. By using the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) conceptual framework, we identified as direct drivers of forest cover change: (i) roads construction; (ii) forest degradation; (iii) hydropower projects; (iv) urban expansion; (v) agriculture and pasture expansion; (vi) rural land occupation; (vii) mining; (viii) climate change. As indirect drivers we identified: (i) energy demand; (ii) population growth; (iii) land prices; (iv) commodity demand; (v) consumption behavior. The development of conservation strategies in the borders of deforested areas is needed given the high demand for Nature´s Contributions to People supply. We also propose policies to address the main drivers of forest cover change, influencing land management and consumption behavior in the state. At last, we envision future positive scenarios that would emerge from policy applications and sustainable actions. Based on our study, we discuss the importance of social learning for developing pathways leading to positive futures that consider the integrity and development of both ecological and social systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.