Since the early 1950's the use of Germanium has been continuously growing as new applications are being developed. Its first commercial usage as the main material, from which the semiconductors were made, was later replaced by Silicon. The applications were then shifted to a key component in fiber optics, infrared night vision devices and space solar cells, as well as a polymerization catalyst for polyethylene terephthalate (PET). With the advance development in new technologies, the attentions have been brought back to Germanium due to its excellent semiconductor properties. New applications on the field of high efficiency solar cells, SiGe based chips, LED technologies, etc., are being developed and show a great potential. According to DERA (Deutsche Rohstoffagentur/German Mineral Resources Agency), the demand for Ge will grow considerably by 2030, pushed mostly by the increase in the fiber optics market and advanced materials sector [1]. Therefore, this paper focuses on an overview of the production chain of Germanium, especially from its concentrate up to the single crystal growth of its valuable ultra-pure metallic form to be used in high technological applications.
Aluminum ultra-purification is commonly realized through a combination of three-layer electrolytic refining and fractional crystallization, mostly using zone melting. In order to achieve a purity over 6N with the aid of zone melting, many passes have to be performed, taking several days to be accomplished. This paper focuses on a fractional crystallization methodology using a rotating and internally gas cooled crystallizer ("cooled finger"), based on a Japanese patent from the 1980s, about which no scientific investigation or publication has yet been found. This paper focuses on the impact of process conditions (mainly cooling gas flow and rotation velocity) on the growth rate of the crystallized material as well as on the reduction factor of the impurities Fe, Si, Pb, and Zn in aluminum in relationship to their initial concentration and their interaction in a multi-component system. This technique can be considered as a promising alternative for purification of aluminum as well as other metallic systems.
Aluminum and aluminum-based alloys have been used for many years. In view of the increase in material purity requirements of advanced technology products, research regarding high-purity aluminum has gained significant attention in recent years. In this review, we seek to describe the fundamental purification principles and the mechanisms of various segregation techniques used to produce high-purity aluminum. Moreover, we aim to provide an overview of high-purity aluminum production, with particular emphasis on: (a) principles on how to produce high-purity aluminum by layer- and suspension-based segregation methods; (b) discussion of various influencing process parameters for each technique, including three-layer electrolysis, vacuum distillation, organic electrolysis, suspension-based segregation, zone melting, Pechiney, Cooled Finger, and directional solidification; as well as (c) investigations of fundamental working principles of various segregation methods and corresponding reported end-purification for the production of HP-Al. Eventually, the end-reported product purity, and advantages and disadvantages of various purification methods and technologies are summarized. By analyzing and comparing the characteristics of different methods, we put forward suggestions for realizing efficient and environmentally friendly production of high-purity aluminum in the future.
Zone refining, as the currently most common industrial process to attain ultrapure metals, is influenced by a variety of factors. One of these parameters, the so-called "zone length", affects not only the ultimate concentration distribution of impurities, but also the rate at which this distribution is approached. This important parameter has however neither been investigated experimentally, nor ever varied for the purpose of optimization. This lack of detections may be due to the difficult temperature measurement of a moving molten area in a vacuum system, of which the zone refining methodology is comprised. Up to now, numerical simulation as a combination of complex mathematical calculations, as well as many assumptions has been the only way to reveal it. This paper aims to propose an experimental method to accurately measure the molten zone length and to extract helpful information on the thermal gradient, temperature profile and real growth rate in the zone refining of an exemplary metal, in this case aluminum. This thermographic method is based on the measurement of the molten surface temperature via an infrared camera, as well as further data analysis through the mathematical software MATLAB. The obtained results show great correlation with the visual observations of zone length and provide helpful information to determine the thermal gradient and real growth rate during the whole process. The investigations in this paper approved the application of an infrared camera for this purpose as a promising technique to automatically control the zone length during a zone refining process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.