Clusters of Aleatico winegrape were picked at 18 degrees Brix and placed at 10, 20, or 30 degrees C, 45% relative humidity (RH) and 1.5 m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0, 10, 20, 30, and 40% weight loss (wl). Selected polyphenols and sugar content (expressed as SSC = soluble solids content) both measured on dry weight basis, polyphenol oxidase (PPO), and phenylpropanoid pathway gene expression were analyzed. Phenolic acids increased significantly at 20% wl at 20 degrees C, while at 10 degrees C the increase was lower. Stilbenes (trans-resveratrol and trans-piceid) and catechins rose more than double to 100 mg/kg and more than 3-fold to 135 mg/kg at 20 degrees C and 10% wl. At 10 degrees C the increase of these compounds was less, but higher than initial values. At 30 degrees C, except for a significant rise at 10% wl for catechins and stilbenes, all the rest of the compounds diminished. Anthocyanins increased at 10 and 20 degrees C, but decreased at 30 degrees C. PPO rapidly increased at 20 and 30 degrees C at 10% wl and then declined, while at 10 degrees C the activity lasted longer. Relative gene expression of phenylalanine ammonia lyase (PAL), stilbene synthase (STS), chalcone isomerase (CHI), dihydroflavonol reductase (DFR) were upregulated at 10 degrees C more than at 20 degrees C, at 20% wl, while at 30 degrees C the gene expression was downregulated.
Reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection was employed to study the accumulation of stilbenes and other naturally occurring polyphenol intermediates of flavonoid pathway in tomato fruits of plants genetically modified to synthesize resveratrol. The transgenic tomato fruits were obtained by overexpression of a grapevine gene encoding the enzyme stilbene synthase in tomato plants (Lycopersicon esculentum Mill.). Stilbenes and flavonoids, either glycosylated or free, were simultaneosly identified by electrospray interface (ESI)-MS in negative ionization mode and were quantified by PDA detection at the wavelength corresponding to their maximum absorbance. The two detectors were coupled online with an HPLC system utilizing a narrow-bore C18 reversed-phase column, which was eluted by a multistep gradient of increasing concentration of acetonitrile in water containing 0.5% (v/v) formic acid. The results of these analysis revealed that the genetic modification of the tomato plants originated different levels of accumulation of four stilbenes (i.e., trans- and cis-piceid and trans- and cis-resveratrol) in their fruit depending on the stages of ripening. Either at immature or at mature stages of ripening the stilbenes were preferentially accumulated in the fruit peel as the glycosylated form. The highest amount of trans-piceid and trans-resveratrol were found in the peel of fruits harvested at mature stage of ripening. The variations in the levels of rutin, naringenin, and chlorogenic acid found in the samples extracted from the fruits of transgenic tomato plants, in comparison to that determined in the control lines, seemed to be related to the genetic transformation, whose effect on the flavonoid biosynthetic pathway needs to be elucidated by additional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.