Television White Spaces (TVWS)-based cognitive radio systems can improve spectrum efficiency by facilitating opportunistic usage of television broadcasting spectrum by secondary users without interfering with primary users. Previously applied models introduce missed detection errors, giving a limited estimation of the spectrum occupancy, which does not correspond to the reality of its usage, hence resulting in a partial waste of this resource. Considering jointly parameters like false alarm probability and detection probability, this article proposes a probabilistic model that can identify TVWS with improved accuracy. The proposed model considers energy detection criteria, combined with simultaneous sensing of the noise and of the signal from primary users. In order to demonstrate the model effectiveness, a low-cost Mobile Spectrum Sensing Station prototype was designed, implemented, and subsequently mounted on a vehicle. More than eight million spatio-temporally variant data samples were collected by scanning the UHF-TV spectrum of 500–698 MHz in the city of Windsor, ON, Canada. Analysis of the collected data showed that the proposed model achieves an accuracy improvement of about 9.6% compared to existing models, demonstrating that TVWS vary with spatial displacement and increasing significantly in the rural areas. Even in the most crowded spectrum zone, about 28% of the channels are identified as TVWS, and this number increases to a maximum of 60% in less crowded regions in urban areas. We conclude that the proposed model improves the TVWS detection compared with other used models, and also that the elements considered in this research contribute to reduce the complexity of the mathematical calculations while maintaining the accuracy. A low-cost open-source sensing station has been designed and tested, which represents an operative and useful data source in this setting.
A public safety answering point (PSAP) receives alerts and attends to emergencies that occur in its responsibility area. The analysis of the events related to a PSAP can give us relevant information in order to manage them and to improve the performance of the first response institutions (FRIs) associated to every PSAP. However, current emergency systems are growing dramatically in terms of information heterogeneity and the volume of attended requests. In this work, we propose a system for statistical, spatial, and temporal analysis of incidences registered in a PSAP by using simple, yet robust and compact, event representations. The selected and designed temporal analysis tools include seasonal representations and nonparametric confidence intervals (CIs), which dissociate the main seasonal components and the transients. The spatial analysis tools include a straightforward event location over Google Maps and the detection of heat zones by means of bidimensional geographic Parzen windows with automatic width control in terms of the scales and the number of events in the region of interest. Finally, statistical representations are used for jointly analyzing temporal and spatial data in terms of the "time-space slices". We analyzed the total number of emergencies that were attended during 2014 by seven FRIs articulated in a PSAP at the Ecuadorian 911 Integrated Security Service. Characteristic weekly patterns were observed in institutions such as the police, health, and transit services, whereas annual patterns were observed in firefighter events. Spatial and spatiotemporal analysis showed some expected patterns together with nontrivial differences among different services, to be taken into account for resource management. The proposed analysis allows for a flexible analysis by combining statistical, spatial and temporal information, and it provides 911 service managers with useful and operative information.
A public safety answering point (PSAP) receives thousands of security alerts and attends a similar number of emergencies every day, and all the information related to those events is saved to be post-processed and scrutinized. Visualization and interpretation of emergency data can provide fundamental feedback to the first-response institutions, to managers planning resource distributions, and to all the instances participating in the emergency-response cycle. This paper develops the application of multiple correspondence analysis (MCA) of emergency responses in a PSAP, with the objective of finding informative relationships among the different categories of registered and attended events. We propose a simple yet statistically meaningful method to scrutinize the variety of events and recorded information in conventional PSAPs. For this purpose, MCA is made on the categorical features of the available report forms, and a statistical description is achieved from it by combining bootstrap resampling and Parzen windowing, in order to provide the user with the most relevant factors, their significance, and a meaningful representation of the event grouping trends in a given database. We analyzed the case of the 911-emergency database from Quito, Ecuador, which includes 1,078,846 events during 2014. Individual analysis of the first-response institutions showed that there are groups with very related categories, whereas their joint analysis showed significant relationships among several types of events. This was the case for fire brigades, military, and municipal services attending large-scale forest fires, where they work in a combined way. Independence could be established among actions in other categories, which was the case for specific police events (as drug selling and distribution) or fire brigades events (as fire threats). We also showed that a very low number of factors can be enough to accurately represent the dynamics of frequent events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.