Nowadays, a sustainable and smart city focuses on energy efficiency and the reduction of polluting emissions through smart mobility projects and initiatives to “sensitize” infrastructure. Smart parking is one of the building blocks of intelligent mobility, innovative mobility that aims to be flexible, integrated, and sustainable and consequently integrated into a Smart City. By using the Internet of Things (IoT) sensors located in the parking areas or the underground car parks in combination with a mobile application, which indicates to citizens the free places in the different areas of the city and guides them toward the chosen parking, it is possible to reduce air pollution and fluidifying noise traffic. In this article, we present and discuss an innovative Deep Learning-based ensemble technique in forecasting the parking space occupancy to reduce the search time for parking and to optimize the flow of cars in particularly congested areas, with an overall positive impact on traffic in urban centres. A genetic algorithm has also been used to optimize predictors parameters. The main goal is to design an intelligent IoT-based service that can predict, in the next few hours, the parking spaces occupancy of a street. The proposed approach has been assessed on a real IoT dataset composed by over than 15M of collected sensor records. Obtained results demonstrate that our method outperforms both single predictors and the widely used strategy of the mean providing inherently robust predictions.
Potential Celiac Patients (PCD) bear the Celiac Disease (CD) genetic predisposition, a significant production of antihuman transglutaminase antibodies, but no morphological changes in the small bowel mucosa. A minority of patients (17%) showed clinical symptoms and need a gluten free diet at time of diagnosis, while the majority progress over several years (up to a decade) without any clinical problem neither a progression of the small intestine mucosal damage even when they continued to assume gluten in their diet. Recently we developed a traditional multivariate approach to predict the natural history, on the base of the information at enrolment (time 0) by a discriminant analysis model. Still, the traditional multivariate model requires stringent assumptions that may not be answered in the clinical setting. Starting from a follow-up dataset available for PCD, we propose the application of Machine Learning (ML) methodologies to extend the analysis on available clinical data and to detect most influent features predicting the outcome. These features, collected at time of diagnosis, should be capable to classify patients who will develop duodenal atrophy from those who will remain potential. Four ML methods were adopted to select features predictive of the outcome; the feature selection procedure was indeed capable to reduce the number of overall features from 85 to 19. ML methodologies (Random Forests, Extremely Randomized Trees, and Boosted Trees, Logistic Regression) were adopted, obtaining high values of accuracy: all report an accuracy above 75%. The specificity score was always more than 75% also, with two of the considered methods over 98%, while the best performance of sensitivity was 60%. The best model, optimized Boosted Trees, was able to classify PCD starting from the selected 19 features with an accuracy of 0.80, sensitivity of 0.58 and specificity of 0.84. Finally, with this work, we are able to categorize PCD patients that can more likely develop overt CD using ML. ML techniques appear to be an innovative approach to predict the outcome of PCD, since they provide a step forward in the direction of precision medicine aimed to customize healthcare, medical therapies, decisions, and practices tailoring the clinical management of PCD children.
nowadays, data-driven methodologies based on the clinical history of patients represent a promising research field in which personalized and intelligent healthcare systems can be opportunely designed and developed. In this perspective, Machine Learning (ML) algorithms can be efficiently adopted to deploy smart services to enhance the overall quality of healthcare systems. in this work, starting from an in-depth analysis of a data set composed of millions of medical booking records collected from the public healthcare organization in the region of campania, italy, we have developed a predictive model to extract useful knowledge on patients, medical staff, and related healthcare structures. In more detail, the main contribution is to suggest a Deep Learning (DL) methodology able to predict the access of a patient in one or more medical facilities of a fixed set in the immediate future, the subsequent 2 months. A structured Temporal Convolutional Neural Network (TCNN) is designed to extract temporal patterns from the administrative medical history of a patient. the experiment shows the goodness of the designed methodology. finally, this work represents a novel application of a TCNN model to a multi-label classification problem not linked to text categorization or image recognition. Healthcare is one of the main sectors fostering the exponential growth of big data on account of four important phenomena: the digitalization of diagnostic imaging, the replacement of papers with digital reporting, the development of biotechnologies used in the field of the so-called "omics" sciences, and the explosion of the so-called Internet of Medical Things (IoMT). The application of Machine Learning (ML) in healthcare is a very promising research field in which researchers, companies, and organizations are increasingly endeavoring to design innovative services and smart solutions 1,2. The potential of ML in medicine is particularly notable in certain areas, such as the automatic analysis of medical records, which, being compiled in an unstructured way, have traditionally not been considered as exploitable with an algorithmic approach aiming at the production of automatic and structured composition reports. The progress of ML, on the other hand, is making it possible to exploit these data also, since it is no longer as "difficult" for software as it had been until the recent past. In this perspective, the great experience and huge amount of data deriving from the healthcare domain can enable physicians and organizations to make quicker and more accurate diagnoses and offer personalized and efficient services 3 and can facilitate researchers in an understanding of the mechanisms underlying diseases to predict the disease risk and achieve its timely prevention. Yang et al. discussed for the first time on the application of emerging information technologies and new paradigms to healthcare services 4. Certainly, a potentially immense amount of data is generated, enhanced day-by-day through the application of e-Health services, such as El...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.