Summary Many species in the order Bacillales form a specialized cell type called a spore that is resistant to a range of environmental stresses. Transmission electron microscopy (TEM) reveals that the spore is comprised of a series of concentric shells, surrounding an interior compartment harbouring the spore DNA. The outermost of these shells varies considerably in morphology among species, likely reflecting adaptations to the highly diverse niches in which spores are found. To better characterize the variation in spore ultrastructure among diverse species, we used TEM to analyse spores from a collection of 23 aerobic spore‐forming bacteria from the Solo do Distrito Federal (SDF strains), spanning the genera Bacillus, Lysinibacillus, Paenibacillus and Brevibacillus, isolated from soil from central Brazil. We found that the structures of these spores varied widely, as expected. Interestingly, even though these isolates are novel strains of each species, they were structurally very similar to the known examples of each species in the literature. Because in most cases, the species we analysed are poorly characterized, our data provide important evidence regarding which structural features are likely to be constant within a taxon and which are likely to vary.
Species of the genus Bacillus and related genera are collectively designated Aerobic Endospore-Forming Bacteria (AEFB). Inside the phylum Firmicutes, these species are allocated in the class Bacilli, order Bacillales which contains seven out of ten families harbouring endospore-formers: Alicyclobacillaceae,
The aerobic endospore-forming bacteria (AEFB) comprise species of Bacillus and related genera and have long been regarded as prominent constituents of the soil bacterial community. The wide diversity of AEFB renders appropriate categorisation and generalisations a challenging task. We previously isolated 312 AEFB strains from Brazilian soils that we designated SDF (Solo do Distrito Federal) strains. To better understand the SDF diversity and explore their biotechnological potential, we addressed the biochemical and physiological profiles of these 312 environmental strains by performing 30 tests in this work. Of these, the 16S rRNA gene sequences segregated 238 SDF strains into four genera in the family Bacillaceae and two in the Paenibacillaceae. Bacillus spp. were the most prevalent, followed by species of Paenibacillus. We summarised the phenotypic test relationships among selected SDF strains using a Pearson correlation-based clustering represented in heatmaps. In practice, biochemical and physiological profiles are often less discriminatory than molecular data and may be unstable because of the loss of traits. Although these test reactions are not universally positive or negative within species, they may define biotypes and be efficient strain markers, enhancing the accuracy of unknown sample identification. It can also help select the most representative phenotypes of samples. Along with the other phenotypic and genotypic data, the present results are of great importance for the robust classification of the SDF strains within the scope of the polyphasic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.