Fe-rich Oxisols on mafic rocks in Brazil generally have high magnetic susceptibility with high contents of some trace elements. These are taxonomically similar soils; however, differences in magnetic and geochemical properties may affect agricultural or environmental usability and subsequent management. This study investigated the pedogenesis of Fe-rich Oxisols from various parent materials and evaluated the lithogenetic influence on magnetic susceptibility and trace elements contents. Soil samples were collected from Bw horizons in 13 Rhodic Oxisols and a Typic Oxisol developed from several parent materials in Minas Gerais State, Brazil. Soils were analyzed by X-ray diffractometry (XRD) and magnetometry. Soil chemical analyses consisted of sulfuric and total (tri-acid) digestions and selective Fe oxides dissolutions and statistical correlations were determined. Fe-rich Oxisols presented a typical mineralogical composition of highly weathered soils with structural stability. The results confirm the difficulty to identify accurately magnetic minerals in different grain sizes using XRD. However, coarse fractions still exert dominant influence on the magnetic properties of the Fe-rich Rhodic Oxisols. In addition, coarse fractions probably contribute to the enrichment of superparamagnetic particles for the clay fraction. Although highly weathered, Fe-rich Oxisols may have their geochemical attributes still controlled by the parent material, where trace elements seem to be correlated with the magnetic minerals in the coarse fractions. Thus, the natural replacement of some trace elements from soil-solution equilibrium reactions during plant development could be more effective in soils with higher magnetic particles concentrations in the coarse fractions.
Despite the considerable amount of information on the mineralogical characteristics of pedogenic Fe oxides in Brazilian soils, there are few studies on Fe-rich soils developed from mafic rocks with taxonomic identities at lower categorical levels. This study evaluated the mineralogical characteristics of pedogenic Fe oxides in B horizons (Bw) of Fe-rich Oxisols developed from several mafic rocks in the state of Minas Gerais, Brazil. The Bw horizons were sampled at a 0.8-1.0 m depth in 13 Ferric and Perferric Rhodic Oxisols along with a Mesoferric Typic Oxisol originating from basalt, gabbro, tuffite, amphibolite and itabirite in Minas Gerais. The selected soils have taxonomic identities up to the fourth categorical level of the Brazilian System of Soil Classification. In the laboratory, the following analyses were made: a) powder X ray diffraction (XRD) of the clay fraction before and after selective concentration of Fe oxides by silicate alkaline dissolution (5 mol L-1 NaOH); b) selective chemical dissolution of the clay fraction by citrate-bicarbonate-dithionite (CBD), acid ammonium oxalate (AAO), and sulfuric acid (H 2 SO 4 1.8 mol L-1); c) quantitative estimation of minerals in the clay fraction through allocation of phases from the XRD patterns, magnetic susceptibility of the clay fraction, and quantification of elements after sulfuric acid digestion (H 2 SO 4 1:1) of the air-dried fine earth and treatment of the clay fraction with CBD; and d) estimation of the mean crystal size (MCS), specific surface area (SSA), and isomorphic Al-substitution (IS) of hematite, goethite, and maghemite from the XRD patterns obtained from concentrates of Fe oxides. The results showed that estimation of Fe content of maghemite by selective dissolution with 1.8 mol L-1 H 2 SO 4 may not be accurate enough to realistically reflect the maghemite contents in the soil sample. The Al content extracted may also be influenced by other minerals that are sources of this element. Hematite crystals were predominantly placoid in shape in all Rhodic Oxisols and had smaller SSA compared to goethite, which showed both isodimensional and asymmetric habit. Higher crystallinity of maghemite and the IS values generally lower than those of hematite and goethite suggest that in well-drained soils derived from mafic rocks, the IS phenomenon in maghemites seems to result from pedogenetic advancement after its formation from magnetite oxidation.
In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.