Structural aging, degradation phenomena, and damage due to hazardous events are common causes of failure in civil structures and infrastructures. The increasing need of extending the structure lifespan for sustainability and economic reasons motivated the rapid development of remote, fully automated structural health monitoring systems. Different approaches have been developed for damage detection based on the incoming data. Modal-based damage detection is probably one of the most popular procedures for structural health monitoring of civil structures, also thanks to the development of robust automated operational modal analysis algorithms in the last decade. However, the sensitivity of modal parameter estimates and the associated damage features to environmental and operational factors represents a significant drawback to the extensive application of this technology. Thus, effective damage detection cannot skip the preliminary compensation of the effect of those variables on modal properties. Different approaches to compensate the environmental influence on modal property estimates are reported in the literature. In this article, the use of Second-Order Blind Identification is proposed. It is applied to a number of case studies in order to validate its effectiveness in the presence of one or more environmental or operational variables. Results demonstrate that it can model the variability of natural frequency estimates in operational conditions and, above all, it can give a fundamental insight in determining the causes of such variability.
Reinforced concrete bridges represent a majority of the Italian stock and they play a primary role to ensure the efficiency of the transportation network and prompt rescue in the case of an emergency. However, most of them have been designed and built according to outdated codes, or even without any seismic detailing. The significant impact of strong motions on the road network as well as the human life and economy emphasizes the need for effective strategies for post-earthquake emergency management and to support rescue operations. The present paper aims at evaluating, against real data, the effectiveness of automated modal parameter monitoring for vibration-based Structural Health Monitoring (SHM) of existing bridges in earthquake prone areas. This objective has been pursued in the context of shaking table tests on a 1:3 scale single span bridge representative of existing highway bridges built in the 60's in Italy. The dynamic response of the structure before and after the application of asynchronous seismic input has been analyzed for damage detection and performance assessment. Results show that partially hidden damage can be remotely detected, thus validating the interesting applicative perspectives of automated output-only modal identification and modal-based damage detection for fast assessment of existing bridges in the early earthquake aftershock. The robustness of the SHM system to sensor overload due to earthquake shaking has been also assessed, demonstrating the applicability of modal-based SHM in seismic regions even in the absence of a measurement chain specifically designed to resolve the large amplitude vibrations induced by earthquakes. Finally, the possibility of complementing modal-based SHM with drift-based estimates is explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.