Ammonia (NH3) detection has gained considerable attention in agricultural and environmental monitoring, chemical and pharmaceutical processing, and disease diagnosis, which requires the development of sensors with high sensitivity. Herein, we propose a novel gas sensor based on nanocomposites of TiO2 hollow nanofibers and polyaniline (PANI) for the sensitive detection of ammonia at room temperature. TiO2 nanostructures in anatase phase were prepared by the combination of coaxial electrospinning and calcination treatment. The resulting material was mixed with PANI and deposited onto gold interdigitated electrodes (IDEs). The hybrid platforms exhibited superior sensing performance compared to the platform based on their individual phases, which is ascribed to a synergistic effect from p‐n heterojunction formation. Specifically, the platforms based on TiO2/PANI nanocomposite showed a fast response towards NH3 (e. g., 55 s at 10 ppm) at room temperature (25 °C). Additionally, the platform demonstrated the ability to detect NH3 at low concentrations (10–30 ppm) and a detection mechanism was proposed to explain the results. Overall, these results show the promise of electrospun TiO2 hollow nanofibers/PANI composites for the development of high‐performance room temperature ammonia sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.