A stress exists in solid surfaces even if the underlying bulk material is stress-free. This paper investigates the effect of surface stress on the value of the Si lattice parameter measured by combined x-ray and optical interferometry. An elastic-film model has been used to provide a surface load in a finite element model on the x-ray interferometer crystal. Eventually, an interferometer design is proposed to determine a measurement where the effect of the surface stress is deemed to be detected.
Injection compression molding (ICM) provides enhanced optical performances of molded polymer optics in terms of birefringence and transmission of light compared to Injection molding (IM). Nevertheless, ICM requires case-dedicated process optimization to ensure that the required high accuracy geometrical replication is achieved, particularly especially in the case of surface micro-features. In this study, two factorial designs of experiments (DOE) were carried out to investigate the replication capability of IM and ICM on a micro structured Fresnel lens. A laser scanning confocal microscope was employed for the quality control of the optical components. Thus, a detailed uncertainty budget was established for the dimensional measurements of the replicated Fresnel lenses, considering specifically peak-to-valley (PV) step height and the pitch of the grooves. Additional monitoring of injection pressure allowed for the definition of a manufacturing signature, namely, the process fingerprint for the evaluation of the replication fidelity under different process conditions. Moreover, considerations on the warpage of parts were related to a manufacturing signature of the molding processes. At last, the global part mass average and standard deviation were measured to correlate local geometrical replication performances with global part quality trends.
The second international comparison of absolute gravimeters was held in Walferdange, Grand Duchy of Luxembourg, in November 2007, in which twenty absolute gravimeters took part. A short description of the data processing and adjustments will be presented here and will be followed by the presentation of the results. Two different methods were applied to estimate the relative offsets between the gravimeters. We show that the results are equivalent as the uncertainties of both adjustments overlap. The absolute gravity meters agree with one another with a standard deviation of 2 μgal (1 gal = 1 cm/s 2 ). In 1999, a laboratory ( Fig. 5.1) dedicated to the comparison of absolute gravimeters was built within the WULG. The laboratory lies 100 m below the surface at a distance of 300 m from the entrance of the mine. The WULG is environmentally stable (i.e., constant temperature and humidity within the lab), and is extremely well isolated from anthropogenic noise. It has the power and space requirements to be able to accommodate up 16 instruments operating simultaneously. IntroductionMultiple absolute gravimeter comparisons are regularly carried out. Being absolute instruments, these gravimeters cannot really be calibrated. Only some of their components (such as the atomic clock and the laser) can be calibrated by comparison with known standards. The only way one currently has to verify their good working order is via a simultaneous comparison with other absolute gravimeters of the same and/or if possible even of a different model, to detect possible systematic errors.During a comparison, we cannot estimate how accurate the meters are: in fact, as we have no way to know the true value of g, we can only investigate the relative offsets between instruments. This means that all instruments can suffer from the same unknown and undetectable systematic error. However, differences larger than the uncertainty of the measurements, is usually indicative of a possible systematic error.For the second comparison in Walferdange, a few new procedures have been introduced. First, some of the participants accepted to take part in a
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk CIRP Template v4.0 An international comparison of surface texture parameters quantification on polymer artefacts using optical instruments G. Tosello (2) An international comparison of optical instruments measuring polymer surfaces with arithmetic mean height values in the sub-micrometre range has been carried out. The comparison involved sixteen optical surface texture instruments (focus variation instruments, confocal microscopes and coherent scanning interferometers) from thirteen research laboratories worldwide. Results demonstrated that: (i) agreement among different instruments could be achieved to a limited extent; (ii) standardized guidelines for uncertainty evaluation of areal surface parameters are needed for users; (iii) it is essential that the performance characteristics (and especially the spatial frequency response) of an instrument is understood prior to a measurement.Optical, Surface, Comparison
The research carried out at the Istituto Nazionale di Ricerca Metrologica (formerly Istituto di Metrologia «G. Colonnetti») aiming to develop a transportable ballistic absolute gravimeter ended with a new version of the instrument, called the IMGC-02. It uses laser interferometry to measure the symmetrical free rising and falling motion of a test mass in the gravity field. Providing the same accuracy achieved with previous versions, the instrumental improvements mainly concern size, weight, data processing algorithms and operational simplicity. An uncertainty of 9 µGal (1 µGal=1×10 -8 m•s −2 ) can be achieved within a single observation session, lasting about 12 h, while the time series of several observation sessions show a reproducibility of 4 µGal. At this level, gravity measurements provide useful information in Geophysics and Volcanology. A wide set of dynamic phenomena, i.e. seismicity and volcanic activity, can produce temporal gravity changes, often quite small, with an amplitude ranging from a few to hundreds of microgals. Therefore the IMGC absolute gravimeter has been employed since 1986 in surveying the Italian active volcanoes. A brief history of the gravimeter and the description of the new apparatus, together with the main results of ongoing applications in Geophysics and Volcanology are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.