Salmonella enterica serovar Typhimurium is a prevalent incitant of enteritis in human beings and animals. It has been proposed that host defense responses incited by Salmonella allow the bacterium to overcome colonization resistance. Piglets (n=24) were orally inoculated with S. enterica Typhimurium DT104 or buffer alone, and the host and microbial responses were temporally examined at acute (2 days post-inoculation [dpi]), subacute (6 dpi), and recovery (10 dpi) stages of salmonellosis. At the acute stage of disease, body temperatures were elevated, and feed consumption and weight gain were reduced. Densities of Salmonella associated with gut mucosa decreased over time, with higher densities of the bacterium in the ileum and the large intestine. Moreover, substantive histopathologic changes were observed as a function of time, with prominent epithelial injury and neutrophil infiltration observed at 2 dpi. Correspondingly, a variety of host metrics were temporally affected in piglets with salmonellosis (e.g. TNFα, IFNγ, PR39, βD2, iNOS, IL8, REGIIIγ). The enteric microbiota was characterized using culture-independent and -dependent methods in concert, and taxon- and location-specific changes to the microbiota were observed in infected piglets. Bacteroides spp. (e.g. B. uniformis, B. fragilis), Streptococcus spp. (e.g. S. gallolyticus), and various Gammaproteobacteria were highly associated with inflamed tissues, while bacteria within Ruminococcaceae and Veillonellaceae were mainly associated with healthy mucosa. In conclusion, the study findings showed that S. Typhimurium incited temporal and spatial modifications to the swine autochthonous microbiota, and to host defense responses, that were consistent with overcoming colonization resistance to incite salmonellosis in swine. IMPORTANCE Limited information is available on host and enteric microbiota responses incited by Salmonella enterica Typhimurium in swine, and possible mechanisms by which the bacterium overcomes colonization resistance to incite salmonellosis. Temporal characterization of a variety of host metrics in piglets (e.g. physiologic, histopathologic, and immunologic) showed the importance of studying the progression of salmonellosis. A number of host responses integrally associated with disease development were identified. Utilization of next-generation sequence analysis to characterize the enteric microbiota was found to lack sufficient resolution; however, culture-dependent and -independent methods in combination identified taxon- and location-specific changes to bacterial communities in infected piglets. The study identified bacteria and host responses associated with salmonellosis, which will be beneficial in understanding colonization resistance and for the development of effective alternatives to antibiotics to mitigate salmonellosis.
Salmonella enterica serovar Typhimurium incites salmonellosis in many different species including chickens and human beings. Acute salmonellosis was studied in neonatal broiler chicks by orally inoculating 2-day-old chicks with S. Typhimurium DT104. The temporal impact of disease (1, 2, and 4 days post-inoculation) on the structure and function of the enteric microbiota, on the bird’s immune response in the ileum, cecum, and colon, and on the metabolome of digesta, breast muscle, liver, serum, and hippocampus were examined. Substantive histopathologic changes were observed in the small and large intestine, including the colon of chicks inoculated with S. Typhimurium, and increased in magnitude over the experimental time period. A variety of inflammatory genes (IFNγ, IL8, IL10, INOS, MIP1β, TGFβ2, TLR4, and TLR15) were temporally regulated. In addition, the metabolome of ileal digesta, breast muscle, liver, serum, and hippocampus was temporally altered in infected chicks. Although the structure of bacterial communities in digesta was not affected by S. Typhimurium infection, metabolomic analysis indicated that the function of the microbiota was changed. Collectively, the study findings demonstrate that infection of neonatal chicks by S. Typhimurium imparts a temporal and systemic impact on the host, affecting the immune system, the metabolome, and the function of the enteric microbiota.
Background Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP−/− and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. Results Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP−/− mice that were pretreated (ST+) and not pretreated (ST−) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP−/− and SA+/ST−/mCRAMP−/− mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP–/− and SA+/ST−/mCRAMP–/− mice were affected (e.g. Ifnγ, Kc, Inos, Il1β, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP–/− and SA+/ST−/mCRAMP–/− mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. Conclusion The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.