Land use types and anthropogenic activities represent considerable threats to groundwater pollution. To effectively monitor the groundwater quality, it is vital to measure pollution levels before they become severe. In our research area, located in Gilgit Baltistan in northern Pakistan, groundwater supplies are diminishing due to urban sprawl. In this study, we used a GIS-based DRASTIC model (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) to analyze the area’s hydrological attributes to assess the groundwater susceptibility to pollution. Considering the importance of anthropogenic activities, this research primarily utilizes an adjusted DRASTIC model called DRASTICA, which incorporates anthropogenic impact as a parameter in the model. The resulting map, which depicts vulnerability to groundwater contamination, reveals that 19% of the study area is classed as having high vulnerability, 42% has moderate vulnerability, 37% has low vulnerability, and 2% has very low vulnerability to groundwater contamination. The adopted validation process (nitrate parameter of water quality) revealed that the suggested DRASTICA model achieved better results than the established DRASTIC model in a built-up environment. We used the nitrate concentration in groundwater to verify the formulated results, and the single parameter sensitivity analysis and map removal sensitivity analysis to analyze the model sensitivity. The sensitivity analysis indicated that the groundwater vulnerability to pollution is largely influenced by anthropogenic impact and depth to the water table, thereby suggesting that anthropogenic impact must be explicitly tackled in such studies. The groundwater zones exposed to anthropogenic pollution can be better classified with the help of the proposed DRASTICA model, particularly in and around built-up environments. The responsible authorities can use this groundwater contamination data as an early warning sign, so they can take practical actions to avoid extra pressure on this vital resource.
Driver behavior has been considered as the most influential factor in reducing fatal road accidents and the resulting injuries. Thus, it is important to focus on the significance of driver behavior criteria to solve road safety issues for a sustainable traffic system. The recent study aims to enumerate the most significant driver behavior factors which have a critical impact on road safety. The well-proven Analytic Hierarchy Process (AHP) has been applied for 20 examined driver behavior factors in a three-level hierarchical structure. Linguistic judgment data have been collected from three nominated evaluator groups in order to detect the difference of responses on perceived road safety issues. The comparison scales had been averaged prior to computing the weights of driver behavior factors. The AHP ranking results have revealed that most of the drivers are most concerned about the “Errors”, followed by the “Lapses” for the first level. The highest influential sub-criteria for the second level is the “Aggressive violations” and for the third level, the “Drive with alcohol use”. Kendall’s rank correlation has also been applied to detect the agreement degree among the evaluator groups for each level in the hierarchical structure. The estimated results indicate that road management authorities should focus on high-rank significant driver behavior criteria to solve road safety issues for sustainable traffic safety.
The use of driver behavior has been considered a complex way to solve road safety complications. Car drivers are usually involved in various risky driving factors which lead to accidents where people are fatally or seriously injured. The present study aims to dissect and rank the significant driver behavior factors related to road safety by applying an integrated multi-criteria decision-making (MCDM) model, which is structured as a hierarchy with at least one 5 × 5 (or bigger) pairwise comparison matrix (PCM). A real-world, complex decision-making problem was selected to evaluate the possible application of the proposed model (driver behavior preferences related to road safety problems). The application of the analytic hierarchy process (AHP) alone, by precluding layman participants, might cause a loss of reliable information in the case of the decision-making systems with big PCMs. Evading this tricky issue, we used the Best Worst Method (BWM) to make the layman’s evaluator task easier and timesaving. Therefore, the AHP-BWM model was found to be a suitable integration to evaluate risky driver behavior factors within a designed three-level hierarchical structure. The model results found the most significant driver behavior factors that influence road safety for each level, based on evaluator responses on the driver behavior questionnaire (DBQ). Moreover, the output vector of weights in the integrated model is more consistent, with results for 5 × 5 PCMs or bigger. The proposed AHP-BWM model can be used for PCMs with scientific data organized by traditional means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.