The objective of the study is to examine the causal relationship between energy consumption and environmental pollutants in selected South Asian Association for Regional Cooperation (SAARC) countries, namely, Bangladesh, India, Nepal, Pakistan, and Srilanka, over the period of 1975-2011. The results indicate that energy consumption acts as an important driver to increase environmental pollutants in SAARC countries. Granger causality runs from energy consumption to environmental pollutants, but not vice versa, except carbon dioxide (CO2) emissions in Nepal where there exists a bidirectional causality between CO2 and energy consumption. Methane emissions in Bangladesh, Pakistan, and Srilanka and extreme temperature in India and Srilanka do not Granger cause energy consumption via both routes, which holds neutrality hypothesis. Variance decomposition analysis shows that among all the environmental indicators, CO2 in Bangladesh and Nepal exerts the largest contribution to changes in electric power consumption. Average precipitation in India, methane emissions in Pakistan, and extreme temperature in Srilanka exert the largest contribution.
Resource Description Framework (RDF) inherently supports data mergers from various resources into a single federated graph that can become very large even for an application of modest size. This results in severe performance degradation in the execution of RDF queries. As every RDF query essentially traverses a graph to find the output of the Query, an efficient path traversal reduces the execution time of RDF queries. Hence, query path optimization is required to reduce the execution time as well as the cost of a query. Query path optimization is an NP-hard problem that cannot be solved in polynomial time. Genetic algorithms have proven to be very useful in optimization problems. We propose a hybrid genetic algorithm for query path optimization. The proposed algorithm selects an initial population using iterative improvement thus reducing the initial solution space for the genetic algorithm. The proposed algorithm makes significant improvements in the overall performance. We show that the overall number of joins for complex queries is reduced considerably, resulting in reduced cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.