Pyrite is a common mineral in sedimentary rocks and is widely distributed in a variety of different morphologies and sizes. Pyrite is also widely distributed in the Es3x shale of the Eocene Shahejie Formation in the Zhanhua Sag, Bohai Bay Basin. A combination of geochemical and petrographic studies has been applied to address the formation and distribution of pyrite in the Es3x shale. The methods include thin section analysis to identify the representative samples of the shale-containing pyrite, total organic carbon (TOC) content analysis, X-ray fluorescence, X-ray diffraction, electron probe micro-analysis, and field emission scanning electron microscopy (FE-SEM) coupled with the energy dispersive spectrometer, to observe the characteristics, morphology, and distribution of pyrite in the lacustrine shale. The content of pyrite in the Es3x shale ranges from 1.4 to 11.2% with an average content of 3.42%. The average contents of TOC and total organic sulfur (TS) are 3.48 and 2.53 wt %, respectively. Various types of pyrites are observed during the detailed FE-SEM investigations including pyrite framboids, euhedral pyrite, welded pyrite, pyrite microcrystals, and framework pyrite. Pyrite framboids are densely packed sphere-shaped masses of submicron-scale pyrite crystals with subordinate large-sized euhedral crystals of pyrite. Welded pyrite forms due to the overgrowth and alteration of pyrite crystals within the larger pyrite framboids. Pyrite microcrystals are the euhedral-shaped microcrystals of pyrite. The framework pyrite is also observed and is formed due to the pyritization of plant/algal tissues. Based on the growth mechanism, the pyrites can be divided into syngenetic pyrites, early diagenetic pyrites, and late diagenetic pyrites. The presence of pyrite, especially the abundance of pyrite framboids, suggests that the environment during the Es3x shale deposition in the lacustrine basin was anoxic. Their dominant smaller size suggests the presence of an euxinic water column, which is consistent with the lack of in-place biota and high TOC contents. This research work not only helps to understand the pyrite mineralization, role of organic matter, and reactive iron in pyrite formation in the shale but also helps to interpret the paleoredox conditions during the deposition of shale. This research work can also be helpful to other researchers who can apply these methods and conclusions to studying shale in other similar basins worldwide.
The study of pore characteristics is of great importance in reservoir evaluation, especially in deeply buried sandstone. It controls the storage mechanism and reservoir fluid properties of the permeable horizons. The first member of Eocene Shahejie Formation (Es1) sandstone is classified as feldspathic litharenite and lithic arkose. The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Es1 member of Shahejie Formation. The techniques including thin-section petrography, mercury injection capillary pressure (MICP), scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular, intragranular, dissolution and fracture pores. Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir. Pore size and pore throat size distribution are acquired from mercury injection test. Porosity values range from 0.5% to 30%, and permeability ranges 0.006-7000 mD. Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to > 4 µm and 1 nm to 1.60 µm, respectively, by MICP analysis. The mineral composition also plays an important role in protecting the pores with pressure from failure. Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability, whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected, and so they consist of high porosity with low permeability.
Pore types and pore structure parameters are the important factors affecting the storage capacity of a shale oil reservoir. Pore morphology and mineralogical composition of shales have diverse effects on the upgrading of various phases of shale oil. To interpret the formation and distribution of different pore types and their structure parameters in the lacustrine calcareous shale, a combination of polarizing microscopy, X-ray diffraction, total organic carbon (TOC), field-emission scanning electron microscopy, and low-pressure nitrogen adsorption experiments were conducted on the Es3x shale of the Eocene Shahejie Formation in the Zhanhua Depression. The interpretations regarding pore types, pore structure parameters, and pore size distribution indicate that the pore morphology and pore size distribution in the lacustrine shale are very complicated and demonstrate strong heterogenic behavior. Inorganic pores (interparticle pores, intraparticle pores, intercrystalline pores, dissolution pores, and microfractures) are the most commonly distributed pore types in the studied shale. However, organic matter pores are poorly developed due to the lower thermal maturity of the Es3x shale. The Brunauer–Emmett–Teller specific surface and pore volume range from 0.026 to 1.282 m 2 /g (average 0.697 m 2 /g) and 0.003 to 0.008 cm 3 /g (average 0.005 cm 3 /g), respectively. The shape of the pores varies from slit-like to narrow slit. Different minerals develop different types of pores with various sizes extending from micropores (<2 nm), mesopores (2–50 nm), to macropores (>50 nm). The relationship between mineral components and pore parameters indicates that the carbonate minerals act as the main contributors to the formation and distribution of different pore types in the studied shale. Pore volume and the pore specific surface area did not show a good relationship with mineral composition and TOC due to disordered pores, but pore size shows a good relationship with mineral composition and TOC of the Es3x shale. The whole pore system description showed that the mesopores and macropores are abundantly distributed and are the main contributors to the pore system in the Es3x shale. A comprehensive understanding of the formation mechanism and structural features of various sized pores in a variety of different minerals can provide a good tool for the exploration and development of shale oil reservoirs.
The formation of sparry calcite is very common in fine‐grained sedimentary rocks worldwide. Sparry calcite is formed from the diagenetic calcite crystals having a grain size > 50 μm. It is also widely distributed in the Es3x shale of the Eocene Shahejie Formation in the Zhanhua Depression, Bohai Bay Basin. The detailed investigations of the Es3x shale show that the sparite crystals start appearing at a burial depth > 3,000 m and the total organic carbon content (TOC) is >3 wt%. It indicates that the sparry calcite formed at high depths and in the most organic‐rich intervals of the studied shale. The presence of organic matter (OM) laminae parallel to the sparry calcite laminae, and sparry calcite along the edges of the OM show a direct physical relationship between sparry calcite and OM. It suggests that the diagenetic system was not influenced by hydrothermal fluids and only the OM is possibly responsible for the formation of sparry calcite in the studied shale. Sparry calcite forms in the thermally mature oil window, and oil generation in the Es3x shale causes the dissolution of micrite, providing the ions source for sparry calcite formation. Therefore, the geothermal gradient, as well as oil generation and kerogen maturation, are responsible for sparry calcite growth in the studied shale. The proposed model shows that the sparry calcite can form in the pores formed by elastic deformation as well as in the microfractures in the study area. In laminated shale, sparry calcite followed three stages of its formation, including (a) formation of laterally discrete calcite crystals, (b) lateral intergrowth of equant calcite crystals and (c) lateral intergrowth of fibrous calcite. Likewise, the genesis of sparry calcite in the non‐laminated shale also followed the same three phases; however, elastic deformation played a dominant and an important role in this variety of shale. Based on the detailed interpretations, we suggest that the OM, microfractures and elastic deformation act as major contributors in the formation and maturation of sparry calcite. We expect that this study also highlights the growth mechanism and maturation of sparry calcite in the Zhanhua Depression as well as other similar rift‐related basins around the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.