INTRODUCTION: Parkinson's disease (PD) occurs due to the deficiency of dopamine that regulates various activities of the human body. Researchers have identified that voice is an underlying symptom of PD. Recently, Machine learning (ML) has helped in solving problems of computer vision, natural language processing, speech recognition etc.OBJECTIVES: This paper aims to analyse the effect of feature type selection i.e. MFCC and TQWT on the efficiency of voice based PD detection system along with the use an ensemble learning based classifier for this task.METHODS: Hence, in this work, various machine learning models, including Logistic Regression, Naive Bayes, KNN, Random Forest, Decision Tree, SVM, MLP, and XGBoost, have been employed and explored for PD detection purpose. The task of Feature selection was also done using minimum-Redundancy and Maximum-Relevance (mRMR) and Recursive Feature Elimination (RFE) techniques.
RESULTS:The results of the XGBoost with mRMR feature selection, outperformed all other models with a high accuracy of 95.39% and precision, recall and F1-score of 0.95 each, when both MFCC and TQWT features were selected.
CONCLUSION:The results obtained strongly support the use of XGBoost model for the voice sample based detection of PD along with mRMR feature selection technique.
A potential rise in interest in the Internet of Things in the upcoming years is expected in the fields of healthcare, supply chain, logistics, industries, smart cities, smart homes, cyber physical systems, etc. This paper discloses the fusion of the Internet of Things (IoT) with the so-called “distributed ledger technology” (DLT). IoT sensors like temperature sensors, motion sensors, GPS or connected devices convey the activity of the environment. Sensor information acquired by such IoT devices are then stored in a blockchain. Data on a blockchain remains immutable however its scalability still remains a challenging issue and thus represents a hindrance for its mass adoption in the IoT. Here a communication system based on IOTA and DLT is discussed with a systematic architecture for IoT devices and a future machine-to-machine (M2M) economy. The data communication between IoT devices is analyzed using multiple use cases such as sending DHT-11 sensor data to the IOTA tangle. The value communication is analyzed using a novel “micro-payment enabled over the top” (MP-OTT) streaming platform that is based on the “pay-as-you-go” and “consumption based” models to showcase IOTA value transactions. In this paper, we propose an enhancement to the classical “masked authenticated message” (MAM) communication protocol and two architectures called dual signature masked authenticated message (DSMAM) and index-based address value transaction (IBAVT). Further, we provided an empirical analysis and discussion of the proposed techniques. The implemented solution provides better address management with secured sharing and communication of IoT data, complete access control over the ownership of data and high scalability in terms of number of transactions that can be handled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.