Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Cardiovascular magnetic resonance (CMR) has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of CMR in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of CMR in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
There have been reports of myocarditis following vaccination against COVID-19. We sought to describe cardiac magnetic resonance (CMR) findings among pediatric patients. Retrospective review at a large academic center of patients clinically diagnosed with post-vaccine myocarditis (PVM) undergoing CMR. Data collected included parametric mapping, ventricular function, and degree of late gadolinium enhancement (LGE). Post-processing strain analysis was performed using feature tracking. Strain values, T1/T2 values, and ventricular function were compared to age- and gender-matched controls with viral myocarditis using a Wilcoxon Signed Rank test. Among 12 patients with presumed PVM, 11 were male and 11 presented after the second vaccination dose, typically within 4 days. All presented with chest pain and elevated troponin. 10 met MRI criteria for acute myocarditis. All had LGE typically seen in the lateral and inferior walls; only five had prolonged T1 values. 10 met criteria for edema based on skeletal muscle to myocardium signal intensity ratio and only 5 had prolonged T2 mapping values. Patients with PVM had greater short-axis global circumferential and radial strain, right ventricle function, and cardiac output when compared to those with viral myocarditis. Patients with PVM have greater short-axis global circumferential and radial strains compared to those with viral myocarditis. LGE was universal in our cohort. Signal intensity ratios between skeletal muscle and myocardium may be more sensitive in identifying edema than T2 mapping. Overall, the impact on myocardial strain by CMR is less significant in PVM compared to more classic viral myocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.