Introduction Acute lung injury (ALI) attracted attention among physicians because of its high mortality. We aimed to determine whether the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved in the protective effects of penehyclidine hydrochloride (PHC) against lipopolysaccharide (LPS)-induced ALI. Methods H&E staining was used to observed pathological changes in the lung tissues. ELISA was used to evaluate the concentration of inflammatory mediators in the bronchoalveolar lavage fluid (BALF). White-light microscopy was performed to observe the TUNEL-positive nuclei. The viability of NR8383 alveolar macrophages was determined by using CCK-8. The levels of MPO, MDA, SOD, and GSH-Px were analyzed using ELISA kits. Western blotting was used to evaluate the ERS-associated protein levels and the phosphorylation of PI3K and Akt. Results PHC administration defended against LPS-induced histopathological deterioration and increased pulmonary edema and lung injury scores, while all of these beneficial effects were inhibited by LY. In addition, PHC administration mitigated oxidative stress as indicated by decreases in lung myeloperoxidase (MPO) and malondialdehyde (MDA) concentrations, and increases in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations. It also alleviated LPS-induced inflammation. PHC administration attenuated apoptosis-associated protein levels, improved cell viability, and decreased the number of TdT-mediated dUTP Nick-End Labeling (TUNEL)-positive cells. Furthermore, PHC inhibited ERS-associated protein levels. Meanwhile, the protection of PHC against inflammation, oxidative stress, apoptosis, and ERS was inhibited by LY. Moreover, PHC administration increased PI3K and Akt phosphorylation, indicating that the upregulation of the PI3K/Akt pathway, while this pathway was inhibited by LY. Conclusion PHC significantly activates the PI3K/Akt pathway to ameliorate the extent of damage to pulmonary tissue, inflammation, oxidative stress, apoptosis, and ERS in LPS-induced ALI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.