BackgroundIxodes ricinus is the principal vector of Anaplasma phagocytophilum, the ethiological agent of granulocytic anaplasmosis in Europe. Anaplasmosis is an emerging zoonotic disease with a natural enzootic cycle. The reservoir competence of rodents is unclear. Monitoring of A. phagocytophilum prevalence in I. ricinus and rodents in various habitat types of Slovakia may contribute to the knowledge about the epidemiology of anaplasmosis in Central Europe.MethodsOver 4400 questing ixodid ticks, 1000 rodent-attached ticks and tissue samples of 606 rodents were screened for A. phagocytophilum DNA by real-time PCR targeting the msp2 gene. Ticks and rodents were captured along six transects in an urban/suburban and natural habitat in south-western Slovakia during 2011–2014. Estimates of wildlife (roe deer, red deer, fallow deer, mouflon, wild boar) densities in the study area were taken from hunter’s yearly reports. Spatial and temporal differences in A. phagocytophilum prevalence in questing I. ricinus and relationships with relative abundance of ticks and wildlife were analysed.ResultsOverall prevalence of A. phagocytophilum in questing I. ricinus was significantly higher in the urban/suburban habitat (7.2 %; 95 % CI: 6.1–8.3 %) compared to the natural habitat (3.1 %; 95 % CI: 2.5–3.9 %) (χ2 = 37.451; P < 0.001). Significant local differences in prevalence of infected questing ticks were found among transects within each habitat as well as among years and between seasons. The trapped rodents belonged to six species. Apodemus flavicollis and Myodes glareolus prevailed in both habitats, Microtus arvalis was present only in the natural habitat. I. ricinus comprised 96.3 % of the rodent-attached ticks, the rest were Haemaphysalis concinna, Ixodes trianguliceps and Dermacentor reticulatus. Only 0.5 % of rodent skin and 0.6 % of rodent-attached ticks (only I. ricinus) were infected with A. phagocytophilum. Prevalence of A. phagocytophilum in questing I. ricinus did not correlate significantly with relative abundance of ticks or with abundance of wildlife in the area.ConclusionThe study confirms that urban I. ricinus populations are infected with A. phagocytophilum at a higher rate than in a natural habitat of south-western Slovakia and suggests that rodents are not the main reservoirs of the bacterium in the investigated area.
Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of-induced organ identity.
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism.
BackgroundBabesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated.ResultsBabesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.ConclusionOur findings suggest that I. ricinus and rodents play important roles in the epidemiology of zoonotic Babesia spp. in south-western Slovakia. Associations with vertebrate hosts and the pathogenicity of Babesia spp. infecting H. concinna ticks need to be further explored.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1560-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.