Oxidative stress is implicated in the pathogenesis of different human diseases: Alzheimer, Parkinson, Huntington, amyotrophic lateral sclerosis (Lou Gehrig's disease), Down's syndrome, atherosclerosis, vascular disease, cancer, diabetes mellitus type 1 and type 2, age - related macular degeneration, psoriatic arthritis. The aim of current study is to summarize the scientific evidences for the antioxidant and neuroprotective activity of Galantamine and some of its derivatives. Galantamine is a scavenger of reactive oxygen species and causes neuroprotective effect by lowering the oxidative neuronal damage, through the following pathways: 1) prevention of the activation of P2X7 receptors; 2) protection of mitochondrial membrane potential; 3) pre - vention of the membrane fluidity disturbances. Another mechanism is the decreasing of the overproduction of reactive oxygen species, a result from the increasing of acetylcholine level due to: 1) acethylcholinesterase inhibition; 2) allosteric potentiation of α7 - subtype of nicotinic acetylcholine receptors. A close relationship between acethylcholinesterase inhibition and reduced oxidative injury is observed. Through allosteric potentiation of the α7 - subtype of nicotinic acetylcholine receptors, the drug leads to induction of phosphorylation of serine - threonine protein kinase, stimulates phosphoinositide 3 - kinase and elevates the expression of protective protein Bcl - 2. By activation of these important neuroprotective cascades, Galantamine exerts neuroprotection against a variety of cytotoxic agents (β- amyloid peptide, glutamate, hydrogen peroxide, oxygen and glucose deprivation). The new trend in therapy of Alzheimer's disease will be the investigation and application of compounds such as Galantamine derivatives, which possess acethylcholinesterase and γ- secretase inhibitory activity and antioxidant properties.
The definition of osteoporosis was originally formulated at a conference of the World Health Organization (WHO) in 1993 as 'a systemic skeletal disease characterized by decreased bone mass and altered micro-architecture of bone tissue, leading to enhanced bone fragility and risk of fractures'. Osteoporosis is characterized by low bone mineral density (BMD) and loss of the structural and bio-mechanical properties that are required to maintain bone homeostasis. This review aims to address the currently available options in prevention and treatment of osteoporosis. Management of osteoporosis includes non-pharmacological treatment - diet rich of calcium and vitamin D, healthy lifestyle, proper exercise plan, and pharmacological therapy. Combination of non-pharmacological and pharmacological treatment options have to be considered for prevention of osteoporosis and minimization of the risk of fractures. Given the heterogeneity of osteoporosis syndrome and lack of significant number of comparative studies, the choice of a pharmacological agents should be individualized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.