Baseline estimation is a critical component for latent factor-based collaborative filtering (CF) recommendations to obtain baseline predictions by evaluating global deviations for both users and items from personalized ratings. Classical baseline estimation presupposes that the user’s factual rating range is the same as the system’s given rating range. However, from observations on real datasets of movie recommender systems, we found that different users have different actual rating ranges, and users can be classified into four kinds according to their personalized rating criterion, including normal, strict, lenient, and middle. We analyzed ratings’ distributions and found that the proportion of user ratings’ local standard deviation to the system’s global standard deviation is equal to that of the user’s actual rating range to the system’s rating range. We propose an improved and unified baseline estimation model based on the standard deviation’s proportion to alleviate the influence of classical baseline estimation’s limitation. We also apply the proposed baseline estimation model in existing latent factor-based CF recommendations and propose two instances. We performed experiments on full ratings of datasets by cross evaluations, including Flixster, Movielens (10 M), Movielens (latest small), FilmTrust, and MiniFilm. The results prove that the proposed baseline estimation model has better predictive accuracy than the classical model and is efficient in improving prediction performance for existing latent factor-based CF recommendations.
Voice signals acquired by a microphone array often include considerable noise and mutual interference, seriously degrading the accuracy and speed of speech separation. Traditional beamforming is simple to implement, but its source interference suppression is not adequate. In contrast, independent component analysis (ICA) can improve separation, but imposes an iterative and time-consuming process to calculate the separation matrix. As a supporting method, principle component analysis (PCA) contributes to reduce the dimension, retrieve fast results, and disregard false sound sources. Considering the sparsity of frequency components in a mixed signal, we propose an adaptive fast speech separation algorithm based on multiple sound source localization as preprocessing to select between beamforming and frequency domain ICA according to different mixing conditions per frequency bin. First, a fast positioning algorithm allows calculating the maximum number of components per frequency bin of a mixed speech signal to prevent the occurrence of false sound sources. Then, PCA reduces the dimension to adaptively adjust the weight of beamforming and ICA for speech separation. Subsequently, the ICA separation matrix is initialized based on the sound source localization to notably reduce the iteration time and mitigate permutation ambiguity. Simulation and experimental results verify the effectiveness and speedup of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.