The automation of custom hardware design often focuses on hardware optimizations for smaller portions of code that dominate the design execution. The same presumption can be stated for custom processor design. The data path of the processor can be well optimized for particular blocks of code that are formed during control flow extraction. However, larger source codes can have tens of blocks that result from Control Flow Graph (CFG). We implemented a global semi-automated flow that hierarchically forms the set of blocks which contributions are modeled into processor architecture. Resulting processor model is translated to RTL description and implemented inside FPGA logic.
Evaluation of document classification is straightforward if complete information on the documents’ true categories exists. In this case, the rank of each document can be accurately determined and evaluated. However, in an unsupervised setting, where the exact document category is not available, lift charts become an advantageous method for evaluation of the retrieval quality and categorization of ranked documents. We introduce lift charts as binary classifiers of ranked documents and explain how to apply them to the concept-based retrieval of emotionally annotated images as one of the possible retrieval methods for this application. Furthermore, we describe affective multimedia databases on a representative example of the International Affective Picture System (IAPS) dataset, their applications, advantages, and deficiencies, and explain how lift charts may be used as a helpful method for document retrieval in this domain. Optimization of lift charts for recall and precision is also described. A typical scenario of document retrieval is presented on a set of 800 affective pictures labeled with an unsupervised glossary. In the lift charts-based retrieval using the approximate matching method, the highest attained accuracy, precision, and recall were 51.06%, 47.41%, 95.89%, and 81.83%, 99.70%, 33.56%, when optimized for recall and precision, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.