In early Alzheimer disease (AD) models synaptic failures and upstreaming aberrant patterns of network synchronous activity result in hippocampal-dependent memory deficits. In such initial stage, soluble forms of Amyloid-β (Aβ) peptides have been shown to play a causal role. Among different Aβ species, Aβ25–35 has been identified as the biologically active fragment, as induces major neuropathological signs related to early AD stages. Consequently, it has been extensively used to acutely explore the pathophysiological events related with neuronal dysfunction induced by soluble Aβ forms. However, the synaptic mechanisms underlying its toxic effects on hippocampal-dependent memory remain unresolved. Here, in an in vivo model of amyloidosis generated by intracerebroventricular injections of Aβ25–35 we studied the synaptic dysfunction mechanisms underlying hippocampal cognitive deficits. At the synaptic level, long-term potentiation (LTP) of synaptic excitation and inhibition was induced in CA1 region by high frequency simulation (HFS) applied to Schaffer collaterals. Aβ25–35 was found to alter metaplastic mechanisms of plasticity, facilitating long-term depression (LTD) of both types of LTP. In addition, aberrant synchronization of hippocampal network activity was found while at the behavioral level, deficits in hippocampal-dependent habituation and recognition memories emerged. Together, our results provide a substrate for synaptic disruption mechanism underlying hippocampal cognitive deficits present in Aβ25–35 amyloidosis model.
Synaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals. However, long-lasting synaptic modifications studies during memory formation in physiological conditions in freely moving animals are very scarce. Here, to study synaptic plasticity phenomena during recognition memory in the dorsal hippocampus, field postsynaptic potentials (fPSPs) evoked at the CA3–CA1 synapse were recorded in freely moving mice during object-recognition task performance. Paired pulse stimuli were applied to Schaffer collaterals at the moment that the animal explored a new or a familiar object along different phases of the test. Stimulation evoked a complex synaptic response composed of an ionotropic excitatory glutamatergic fEPSP, followed by two inhibitory responses, an ionotropic, GABAA-mediated fIPSP and a metabotropic, G-protein-gated inwardly rectifying potassium (GirK) channel-mediated fIPSP. Our data showed the induction of LTP-like enhancements for both the glutamatergic and GirK-dependent components of the dorsal hippocampal CA3–CA1 synapse during the exploration of novel but not familiar objects. These results support the contention that synaptic plasticity processes that underlie hippocampal-dependent memory are sustained by fine tuning mechanisms that control excitatory and inhibitory neurotransmission balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.