A series of rare earth elements (REEs)-modified and Mobil Composition of Matter (MCM)-22-supported Pd nanocrystal catalysts were synthesized via a high-temperature solution-phase reduction method and tested for toluene complete oxidation. These catalytic materials were systematically characterized by N2 adsorption/desorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), temperature-programmed surface reaction of toluene (toluene-TPSR) and X-ray photoelectron spectroscopic (XPS) techniques in order to investigate the structure–catalytic property relationship. Moreover, catalysts with an appropriate yttrium content greatly improved the catalytic activity of 0.2%Pd/MCM-22. PdOx (x = 0, 1) nanoparticles, ranging from 3.6 to 6.8 nm, which were well distributed on the surface of MCM-22. Efficient electron transfer from the Pd2+/Pd0 redox cycle facilitated the catalytic oxidation process, and the formation of Pd (or Y) –O–Si bonds improved the high dispersion of the PdOx and Y2O3 particles. Toluene–TPSR experiments suggested that the addition of Y2O3 improved the physical/chemical adsorption of 0.2%Pd/MCM-22, thus increasing the toluene adsorption capacity. Then, 0.2%Pd/7.5%Y/MCM-22 exhibited the highest catalytic performance. In addition, this catalyst maintained 95% conversion with high resistance to water and chlorine poisoning, even after toluene oxidation at 210 °C for 100 h, making it more valuable in practical applications.
In this study, both AlFe composite pillaring agents and AlFe pillared clays (AlFe-PILC) were synthesized via a facile process developed by our group, after which mixed Cr and Ce precursors were impregnated on AlFe-PILC. Catalytic combustion of organic pollutant chlorobenzene (CB) on CrCe/AlFe-PILC catalysts were systematically studied. AlFe-PILC displayed very high thermal stability and large BET surface area (SBET). After 4 h of calcination at 550 °C, the basal spacing (d001) and SBET of AlFe-PILC was still maintained at 1.91 nm and 318 m2/g, respectively. Large SBET and d001-value, along with the strong interaction between the carrier and active components, improved the adsorption/desorption of CB and O2. When the desorption temperatures of CB and O2 got closer to the CB combustion temperature, the CB conversion could be increased to a higher level. CB combustion on CrCe/AlFe-PILC catalyst was determined using a Langmuir–Hinshelwood mechanism. Adsorption/desorption/oxidation properties were critical to design highly efficient catalysts for CB degradation. Besides, CrCe/AlFe-PILC also displayed good durability for CB combustion, whether in a humid environment or in the presence of volatile organic compound (VOC), making the catalyst an excellent material for eliminating chlorinated VOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.