Seed borne microorganisms play an important role in plant biology. Concerns have recently been raised about loss of seed microbial diversity by seed treatments, crop domestication and plant breeding. Information on the seed microbiomes of native plants growing in natural ecosystems is beneficial as they provide the best settings to detect indigenous plant microbe interactions. Here, we characterized the seed bacterial community of 8 native alpine grassland plants. First, seed bacterial diversity was examined using Illumina DNA sequencing, then 28 cultivable bacteria were isolated and potential functions were explored. Across 8 plant species, 343 different bacterial genera were identified as seed endophytes, 31 of those were found in all plant species, indicating a high level of conservation. Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Chloroflexi were the top five dominant phyla. Plant species identity was a key determinant shaping the seed endophytic bacteriome. ACC deaminase activity, siderophores production and secretion of lytic enzymes were common functions shown by isolated bacteria. Our results demonstrate that highly diverse and beneficial bacterial populations are hosted by seeds of alpine grassland species to ensure the establishment of best bacterial symbionts for the next generation. This information is useful for crop improvement by reinstating beneficial seed microbial diversities for high-quality forage and crop seeds.
BackgroundAmmonia oxidizing bacteria (AOB) in soil are of great biological importance as they regulate the cycling of N in agroecosystems. Plants are known to harbor AOB but how they occupy the plant is an unresolved question.MethodsMetabarcoding studies were carried out using Illumina MiSeq sequencing to test the potential of seed vectored AOB exchange between plants and soil.Results and discussionWe found 27 sequences associated with AOB strains belonging to the genera Nitrosospira, Nitrosovibrio, and Nitrosomonas inhabiting Elymus nutans seeds collected from four geographically distanced alpine meadows. Nitrosospira multiformis was the most dominant across the four locations. The AOB community in E. nutans seeds was compared with that of the leaves, roots and soil in one location. Soil and seeds harbored a rich but dissimilar AOB community, and Nitrosospira sp. PJA1, Nitrosospira sp. Nsp17 and Nitrosovibrio sp. RY3C were present in all plant parts and soils. When E. nutans seeds were germinated in sterilized growth medium under greenhouse conditions, the AOB in seeds later appeared in leaves, roots and growth medium, and contributed to nitrification. Testing the AOB community of the second-generation seeds confirmed vertical transmission, but low richness was observed.ConclusionThese results suggest seed vectored AOB may play a critical role in N cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.