The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits.
The search for the genetic determinants of extreme human longevity has been challenged by the phenotype's rarity and its nonspecific definition by investigators. To address these issues, we established a consortium of four studies of extreme longevity that contributed 2,070 individuals who survived to the oldest one percentile of survival for the 1900 U.S. birth year cohort. We conducted various analyses to discover longevity-associated variants (LAV) and characterized those LAVs that differentiate survival to extreme age at death (eSAVs) from those LAVs that become more frequent in centenarians because of mortality selection (eg, survival to younger years). The analyses identified new rare variants in chromosomes 4 and 7 associated with extreme survival and with reduced risk for cardiovascular disease and Alzheimer's disease. The results confirm the importance of studying truly rare survival to discover those combinations of common and rare variants associated with extreme longevity and longer health span.
To identify previously reported disease mutations that are compatible with extraordinary longevity, we screened the coding regions of the genomes of 44 Ashkenazi Jewish centenarians. Individual genome sequences were generated with 30× coverage on the Illumina HiSeq 2000 and single-nucleotide variants were called with the genome analysis toolkit (GATK). We identified 130 coding variants that were annotated as “pathogenic” or “likely pathogenic” based on the ClinVar database and that are infrequent in the general population. These variants were previously reported to cause a wide range of degenerative, neoplastic, and cardiac diseases with autosomal dominant, autosomal recessive, and X-linked inheritance. Several of these variants are located in genes that harbor actionable incidental findings, according to the recommendations of the American College of Medical Genetics. In addition, we found risk variants for late-onset neurodegenerative diseases, such as the APOE ε4 allele that was even present in a homozygous state in one centenarian who did not develop Alzheimer's disease. Our data demonstrate that the incidental finding of certain reported disease variants in an individual genome may not preclude an extraordinarily long life. When the observed variants are encountered in the context of clinical sequencing, it is thus important to exercise caution in justifying clinical decisions. In genome sequences of 44 Ashkenazi centenarians, we identified many coding variants that were annotated as “pathogenic” or “likely pathogenic” based on the ClinVar database. Our data demonstrate that the incidental finding of certain reported disease variants in an individual genome may not preclude an extraordinarily long life. When the observed variants are encountered in the context of clinical sequencing, it is thus important to exercise caution in justifying clinical decisions.
BackgroundScaleless (sc/sc) chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers), we mapped and identified the sc mutation.ResultsThrough a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles.ConclusionsThis work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to map genes based on genotyping of DNA samples from pooled whole blood. The identification of the sc mutation has important implications for the future breeding of this potentially useful trait for the poultry industry, and our genotyping assay can facilitate its rapid introgression into production lines.
Aims/hypothesisSkin fluorescence (SF) is a non-invasive marker of AGEs and is associated with the long-term complications of diabetes. SF increases with age and is also greater among individuals with diabetes. A familial correlation of SF suggests that genetics may play a role. We therefore performed parallel genome-wide association studies of SF in two cohorts.MethodsCohort 1 included 1,082 participants, 35–67 years of age with type 1 diabetes. Cohort 2 included 8,721 participants without diabetes, aged 18–90 years.Resultsrs1495741 was significantly associated with SF in Cohort 1 (p < 6 × 10−10), which is known to tag the NAT2 acetylator phenotype. The fast acetylator genotype was associated with lower SF, explaining up to 15% of the variance. In Cohort 2, the top signal associated with SF (p = 8.3 × 10−42) was rs4921914, also in NAT2, 440 bases upstream of rs1495741 (linkage disequilibrium r2 = 1.0 for rs4921914 with rs1495741). We replicated these results in two additional cohorts, one with and one without type 1 diabetes. Finally, to understand which compounds are contributing to the NAT2–SF signal, we examined 11 compounds assayed from skin biopsies (n = 198): the fast acetylator genotype was associated with lower levels of the AGEs hydroimidazolones of glyoxal (p = 0.017).Conclusions/interpretationWe identified a robust association between NAT2 and SF in people with and without diabetes. Our findings provide proof of principle that genetic variation contributes to interindividual SF and that NAT2 acetylation status plays a major role.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-014-3286-9) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.