DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications.
Highly monodisperse sequence-defined spherical nucleic acids (HE12–SNAs) for delivery of small-molecule anticancer drugs.
Supramolecular one-dimensional (1D) architectures are of high interest in drug delivery and templation of complex linear arrays due to their high aspect ratio and rigidity. A particular desire is the access of 1D nanostructures with high functionality and biorelevance, which opens the door to their applications in materials science and nanomedicine. Here we report the discovery that the site-specific introduction of a cyanine (Cy3) dye unit in sequence-defined DNA amphiphiles causes a complete shift of the overall structure from spheres to 1D DNA nanofibers in aqueous media. We show that the generation of DNA nanofibers is dependent on the presence of cyanine units and their position within the DNA-polymer hybrid. We further demonstrate an example of stimuli-responsive shape-shifting DNA nanofibers to highlight the role of the dye in the overall assembly. Notably, we show the preparation of fibers with controlled length by seeded-growth mechanism. Additionally, the DNA nanofibers exhibit a change in Cy3 dye optical properties upon assembly, typical of cyanine dye aggregation, which can be used to monitor the fiber growth process. To demonstrate the functionality of these structures, we show the templation of gold nanoparticles (AuNP) along the fiber length and demonstrate the directional templation of DNA nanofibers on rectangular DNA origami. Our findings provide a method for generating functional nanomaterials and hierarchical complex architectures and show promise as a platform for biosensing and targeted drug delivery.
In this work, we report a component-minimal spherical nucleic acid (SNA) from monodisperse DNA− polymer conjugates that can load and release nucleic acid therapeutics in a stimuli-responsive manner. We show that this vehicle assembles from only four strands, and conditional release of its antisense therapeutic cargo can be induced upon recognition of specific oligonucleotide triggers via strand displacement. The latter (triggers) may be a microRNA that offers additional synergistic therapy, in addition to the previously shown ability of the SNA to load hydrophobic drugs. The SNA is easy to prepare, has dynamic character, releases its cargo only upon the presence of both triggers, and can survive biological conditions while protecting its cargo. The gene silencing potency of the cargo was tested in live cells and shown to be suppressed when loaded in the SNA, and its activity was restored only upon release with the two triggers. This vehicle has the essential characteristics of versatility, ease of synthesis, low cost, highly responsive behavior, and ability to support combination therapies, making it a promising candidate for cell-selective drug delivery and clinical transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.