An increased expression of focal adhesion kinase (FAK) in a variety of cancers is associated with a poor disease prognosis. To study the role of FAK in breast tumor growth and metastasis formation, we used conditional doxycycline-regulated expression of a dominant-negative acting splice variant of FAK, FAK-related non-kinase (FRNK), in MTLn3 mammary adenocarcinoma cells in a syngeneic Fischer 344 rat tumor and metastasis model. In cell culture, doxycycline-mediated expression of FRNK inhibited MTLn3 cell spreading and migration in association with reduced formation of focal adhesions and phosphorylation of FAK on Tyr 397 , but FRNK did not cause apoptosis. Continuous expression of FRNK decreased the primary tumor growth in the mammary fat pad by 60%, which was not due to induction of apoptosis. Lung metastasis formation was almost completely prevented when FRNK was already expressed 1 day before tumor cell injection, whereas expression of FRNK 11 days after injection did not affect lung metastasis formation. FRNK expression during the first 5 days was sufficient to block metastasis formation, excluding the possibility of FRNK-induced dormancy of tumor cells. Together, these data fit with a model wherein FAK is required for breast tumor cell invasion/migration processes that take place in the early phase of metastasis formation. Our findings suggest that FAK is a good candidate for therapeutic intervention of metastasis formation. (Cancer Res 2005; 65(11): 4698-706)
Proteasomal proteolysis relies on the activity of six catalytically active proteasomal subunits (b1, b2, b5, b1i, b2i and b5i). Applying a functional proteomics approach, we used a recently developed activity-based, cell-permeable proteasome-specific probe that for the first time allows differential visualization of individual active proteasomal subunits in intact primary cells. In primary leukemia samples, we observed remarkable variability in the amounts of active b1/1i-, b2/2i-and b5/5i-type of subunits, contrasting with their constant protein expression. Bortezomib inhibited b5-and b1-type, but to a lesser extend b2-type of subunits in live primary cells in vitro and in vivo. When we adapted the bortezomib-sensitive human acute myeloid leukemia cell line HL-60 to bortezomib 40 nM (HL-60a), proteasomal activity profiling revealed an upregulation of active subunits, and residual b1/b5-type of activity could be visualized in the presence of bortezomib 20 nM, in contrast to control cells. In a panel of cell lines from hematologic malignancies, the ratio between b2-type and (b1 þ b5)-type of active proteasomal polypeptides mirrored different degrees of bortezomib sensitivity. We thus conclude that the proteasomal activity profile varies in primary leukemia cells, and that the pattern of proteasomal subunit activity influences the sensitivity of hematologic malignancies toward bortezomib. Leukemia (2007) 21, 84-92.
The epithelial sodium channel (ENaC) is ubiquitinated by the E3 ligase Nedd4-2 at the apical membranes of polarized cortical collecting duct (CCD) epithelial cells. This leads to ENaC endocytosis and possible degradation. Because ENaC is known to recycle at the apical membranes of CCD cells, deubiquitinating enzymes (DUBs) are likely involved in regulating ENaC surface density by facilitating ENaC recycling as opposed to degradation. Using a chemical probe approach to tag active DUBs, we identified ubiquitin C-terminal hydrolase (UCH) isoform L3 as the predominant DUB in endosomal compartments of CCD cells. Blocking UCH-L3 activity or reducing its expression by selective knockdown increased ENaC ubiquitination and resulted in its removal from the apical membranes of CCD cells. Functionally this caused a rapid reduction in transepithelial Na؉ currents across the CCD epithelia. Surface biotinylation demonstrated the loss of ENaC from the apical surface when UCH-L3 was inhibited. Whole cell or apical surface immunoprecipitation demonstrated increased ENaC ubiquitination with UCH-L3 inhibition. This constitutes a novel function for UCH in epithelia and in the regulation of ion channels and demonstrates the dynamic regulation of apically located ENaC by recycling, which is facilitated by this DUB.
Alterations in levels of glutathione (GSH) and glutathione-dependent enzymes have been implicated in cancer and multidrug resistance of tumor cells. The activity of a number of these, the multidrug resistance-associated protein 1, glutathione S-transferase, DNA-dependent protein kinase, glyoxalase I, and gamma-glutamyl transpeptidase, can be inhibited by GSH-conjugates and synthetic analogs thereof. In this review we focus on the function of these enzymes and carriers in cancer and anti-cancer drug resistance, in relation to their inhibition by GSH-conjugate analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.