We report on a search for engineered signals from a sample of 692 nearby stars using the Robert C. Byrd Green Bank Telescope, undertaken as part of the Breakthrough Listen Initiative search for extraterrestrial intelligence. Observations were made over 1.1-1.9 GHz (L band), with three sets of five-minute observations of the 692 primary targets, interspersed with five-minute observations of secondary targets. By comparing the "ON" and "OFF" observations, we are able to identify terrestrial interference and place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. During the analysis, 11 events passed our thresholding algorithm, but a detailed analysis of their properties indicates that they are consistent with known examples of anthropogenic radio-frequency interference. We conclude that, at the time of our observations, none of the observed systems host high-duty-cycle radio transmitters emitting between 1.1 and 1.9 GHz with an Equivalent Isotropic Radiated Power of ∼10 13 W, which is readily achievable by our own civilization. Our results suggest that fewer than ∼0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey.
Breakthrough Listen (BL) is a ten-year initiative to search for signatures of technologically capable life beyond Earth via radio and optical observations of the local Universe. A core part of the BL program is a comprehensive survey of 1702 nearby stars at radio wavelengths (1-10 GHz). Here, we report on observations with the 64-m CSIRO Parkes radio telescope in New South Wales, Australia, and the 100-m Robert C. Byrd Green Bank radio telescope in West Virginia, USA. Over 2016 January to 2019 March, a sample of 1138 stars was observed at Green Bank using the 1.10-1.90 GHz and 1.80-2.80 GHz receivers, and 189 stars were observed with Parkes over 2.60-3.45 GHz. We searched these data for the presence of engineered signals with Doppler-acceleration drift rates between ±4 Hz s −1 . Here, we detail our data analysis techniques and provide examples of detected events. After excluding events with characteristics consistent with terrestrial radio interference, we are left with zero candidates. That is, we find no evidence of putative radio transmitters above 2.1×10 12 W, and 9.1×10 12 W for Green Bank and Parkes observations, respectively. These observations constitute the most comprehensive search over 1.10-3.45 GHz for technosignatures to date. All data products, totalling ∼219 TB, are available for download as part of the first BL data release (DR1), as described in a companion paper (Lebofsky et. al., 2019)
We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 < z < 0.098 and cover approximately 1,300 square degrees over two long fields. Cross correlation is detected at a significance of 5.18 σ. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (HI) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k ∼ 1.5 h Mpc −1 , the cross power spectrum is more than a factor of 6 lower than expected, with a significance of 14.8 σ. This decrement indicates either a lack of clustering of neutral hydrogen (HI) , a small correlation coefficient between optical galaxies and HI , or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with HI on k ∼ 1.5 h Mpc −1 scales, suggesting that HI is more associated with blue star-forming galaxies and tends to avoid red galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.