A single unit of information is an answer to any anticipated question a motorist may ask. Such questions include: "What happened? Where? What do I do?" This study, a first of its kind, analyzes the optimum number of units of information Dynamic Message Signs (DMSs) should display to influence driver speeding behavior. A 155-mi 2 virtual road network of the Baltimore-Washington Parkway (MD-295) in Maryland was developed for use with a mediumfidelity driving simulator, and 65 participants took part in the study. Six scenarios featured DMSs displaying 2-7 units of information, interchangeably, and a total of 296 simulation sessions were conducted. Mean speeds are calculated over five different phases: the initial speed area, visible area, readable area, lost legibility area and post DMS area. Analysis of variance (ANOVA) and post-hoc analysis showed that participants tend to accelerate as soon as they lose sight of the DMS displaying 2-3 units of information and continue to do so after they pass the DMS. An ordinary least squares (OLS) regression analysis reveals that participants older than 55 slow down the most when they encounter DMSs with 6-7 units of information. Participants in the age group of 26-35 tend to increase speeds, especially when a DMS displays 2-4 units of information. This suggests that the comprehension time is low when there are fewer units of information on a DMS. Too little information may be unclear or ambiguous whereas too much may be hard to comprehend and cause drivers to slow down.
This study investigates the potential effect(s) of different dynamic message signs (DMSs) on driver behavior using a full-scale high-fidelity driving simulator. Different DMSs are categorized by their content, structure, and type of messages. A random forest algorithm is used for three separate behavioral analyses—a route diversion analysis, a route choice analysis, and a compliance analysis—to identify the potential and relative influences of different DMSs on these aspects of driver behavior. A total of 390 simulation runs are conducted using a sample of 65 participants from diverse socioeconomic backgrounds. Results obtained suggest that DMSs displaying lane closure and delay information with advisory messages are most influential with regards to diversion, while color-coded DMSs and DMSs with avoid route advice are the top contributors potentially impacting route choice decisions and DMS compliance. In this first-of-a-kind study, based on the responses to the pre- and post-simulation surveys as well as results obtained from the analysis of driving-simulation-session data, the authors found that color-coded DMSs are more effective than alphanumeric DMSs, especially in scenarios that demand high compliance from drivers. The increased effectiveness may be attributed to reduced comprehension time and ease with which such DMSs are understood by a greater percentage of road users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.