A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 80% of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of ∼8×10(12) electrons per cm2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoemission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.
Bandgap engineering is used to create semiconductor heterostructure devices that perform processes such as resonant tunnelling and solar energy conversion. However, the performance of such devices degrades as their size is reduced. Graphene-based molecular electronics has emerged as a candidate to enable high performance down to the single-molecule scale. Graphene nanoribbons, for example, can have widths of less than 2 nm and bandgaps that are tunable via their width and symmetry. It has been predicted that bandgap engineering within a single graphene nanoribbon may be achieved by varying the width of covalently bonded segments within the nanoribbon. Here, we demonstrate the bottom-up synthesis of such width-modulated armchair graphene nanoribbon heterostructures, obtained by fusing segments made from two different molecular building blocks. We study these heterojunctions at subnanometre length scales with scanning tunnelling microscopy and spectroscopy, and identify their spatially modulated electronic structure, demonstrating molecular-scale bandgap engineering, including type I heterojunction behaviour. First-principles calculations support these findings and provide insight into the microscopic electronic structure of bandgap-engineered graphene nanoribbon heterojunctions.
We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.
We demonstrate the growth of high quality graphene layers by chemical vapor deposition (CVD) on insulating and conductive SiC substrates. This method provides key advantages over the well-developed epitaxial graphene growth by Si sublimation that has been known for decades. (1) CVD growth is much less sensitive to SiC surface defects resulting in high electron mobilities of ∼1800 cm(2)/(V s) and enables the controlled synthesis of a determined number of graphene layers with a defined doping level. The high quality of graphene is evidenced by a unique combination of angle-resolved photoemission spectroscopy, Raman spectroscopy, transport measurements, scanning tunneling microscopy and ellipsometry. Our measurements indicate that CVD grown graphene is under less compressive strain than its epitaxial counterpart and confirms the existence of an electronic energy band gap. These features are essential for future applications of graphene electronics based on wafer scale graphene growth.
Electron-phonon coupling and the emergence of superconductivity in intercalated graphite have been studied extensively. Yet, phonon-mediated superconductivity has never been observed in the 2D equivalent of these materials, doped monolayer graphene. Here we perform angle-resolved photoemission spectroscopy to try to find an electron donor for graphene that is capable of inducing strong electron-phonon coupling and superconductivity. We examine the electron donor species Cs, Rb, K, Na, Li, Ca and for each we determine the full electronic band structure, the Eliashberg function and the superconducting critical temperature T c from the spectral function. An unexpected low-energy peak appears for all dopants with an energy and intensity that depend on the dopant atom. We show that this peak is the result of a dopant-related vibration. The low energy and high intensity of this peak are crucially important for achieving superconductivity, with Ca being the most promising candidate for realizing superconductivity in graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.