Brain-computer interfaces (BCIs) are not only being developed to aid disabled individuals with motor substitution, motor recovery, and novel communication possibilities, but also as a modality for healthy users in entertainment and gaming. This study investigates whether the incorporation of a BCI in the popular game World of Warcraft (WoW) has effects on the user experience. A BCI control channel based on parietal alpha band power is used to control the shape and function of the avatar in the game. In the experiment, participants , a mix of experienced and inexperienced WoW players, played with and without the use of BCI in a within-subjects design. Participants themselves could indicate when they wanted to stop playing. Actual and estimated duration was recorded and questionnaires on presence and control were administered. Afterwards, oral interviews were taken. No difference in actual duration was found between conditions. Results indicate that the difference between estimated and actual duration was not related to user experience but was person specific. When using a BCI, control and involvement were rated lower. But BCI control did not significantly decrease fun. During interviews, experienced players stated that they saw potential in the application of BCIs in games with complex interfaces such as WoW. This study suggests that BCI as an additional control can be as much fun and natural to use as keyboard/mouse control, even if the amount of control is limited.
Recently research into Brain-Computer Interfacing (BCI) applications for healthy users, such as games, has been initiated. But why would a healthy person use a still-unproven technology such as BCI for game interaction? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will need to be taken into account when designing such systems. Therefore, this chapter gives an overview of the state of the art of BCI in games and discusses the consequences of applying knowledge from Human-Computer Interaction (HCI) to the design of BCI for games. The integration of HCI with BCI is illustrated by research examples and showcases, intended to take this promising technology out of the lab. Future
Brain–computer interfaces (BCI) provide a valuable new input modality within human–computer interaction systems. However, like other body-based inputs such as gesture or gaze based systems, the system recognition of input commands is still far from perfect. This raises important questions, such as what level of control should such an interface be able to provide. What is the relationship between actual and perceived control? And in the case of applications for entertainment in which fun is an important part of user experience, should we even aim for the highest level of control, or is the optimum elsewhere? In this paper, we evaluate whether we can modulate the amount of control and if a game can be fun with less than perfect control. In the experiment users (n = 158) played a simple game in which a hamster has to be guided to the exit of a maze. The amount of control the user has over the hamster is varied. The variation of control through confusion matrices makes it possible to simulate the experience of using a BCI, while using the traditional keyboard for input. After each session the user completed a short questionnaire on user experience and perceived control. Analysis of the data showed that the perceived control of the user could largely be explained by the amount of control in the respective session. As expected, user frustration decreases with increasing control. Moreover, the results indicate that the relation between fun and control is not linear. Although at lower levels of control fun does increase with improved control, the level of fun drops just before perfect control is reached (with an optimum around 96%). This poses new insights for developers of games who want to incorporate some form of BCI or other modality with unreliable input in their game: for creating a fun game, unreliable input can be used to create a challenge for the user.
Abstract. In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.
It is an implicit assumption in the field of brain-computer interfacing (BCI) that BCIs can be satisfactorily used to access augmentative and alternative communication (AAC) methods by people with severe physical disabilities. A one-day workshop and focus group interview was held to investigate this assumption. Rehabilitation professionals (N = 28) were asked to critically assess current BCI technology, recommend design requirements and identify target users. The individual answers were analyzed using the theoretical framework of grounded theory. None of the participants expressed a perception of added value of current BCIs over existing alternatives. A major criticism (and requirement) was that the usability of BCI systems should significantly improve. Target users are only those who can hardly or not at all use alternative access technologies. However, such persons often have concurrent physical, sensory, and cognitive problems, which could complicate BCI use. If successful BCI use continues to require a user to sit motionlessly and have intact cognition, then -as previously implicitly assumed -people in the locked-in state (resulting from late-stage amyotrophic lateral sclerosis, multiple sclerosis, spinal muscular atrophy type II or classic or total locked-in syndrome) and people with high spinal cord injury (C1/C2) could be target users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.