We consider the task of reference mining: the detection, extraction and classification of references within the full text of scholarly publications. Reference mining brings forward specific challenges, such as the need to capture the morphology of highly abbreviated words and the dependence among the elements of a reference, both following codified reference styles. This task is particularly difficult, and little explored, with respect to the literature in the arts and humanities, where references are mostly given in footnotes. We apply a deep learning architecture for reference mining from the full text of scholarly publications. We explore and discuss three architectural components: word and character-level word embeddings, different prediction layers (Softmax and Conditional Random Fields) and multi-task over single-task learning. Our best model uses both pre-trained word embeddings and characters embeddings, and a BiLSTM-CRF architecture. We test our solution on a dataset of annotated references from the historiography on Venice and, using a linear-chain CRF classifier as a baseline, we show that this deep learning architecture improves by a considerable margin. Furthermore, multi-task learning performs almost on par with a single-task approach. We thus confirm that there are important gains to be had by adopting deep learning for the task of reference mining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.